22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CRISPR/Cpf1-mediated DNA-free plant genome editing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cpf1, a type V CRISPR effector, recognizes a thymidine-rich protospacer-adjacent motif and induces cohesive double-stranded breaks at the target site guided by a single CRISPR RNA (crRNA). Here we show that Cpf1 can be used as a tool for DNA-free editing of plant genomes. We describe the delivery of recombinant Cpf1 proteins with in vitro transcribed or chemically synthesized target-specific crRNAs into protoplasts isolated from soybean and wild tobacco. Designed crRNAs are unique and do not have similar sequences (≤3 mismatches) in the entire soybean reference genome. Targeted deep sequencing analyses show that mutations are successfully induced in FAD2 paralogues in soybean and AOC in wild tobacco. Unlike SpCas9, Cpf1 mainly induces various nucleotide deletions at target sites. No significant mutations are detected at potential off-target sites in the soybean genome. These results demonstrate that Cpf1–crRNA complex is an effective DNA-free genome-editing tool for plant genome editing.

          Abstract

          Cpf1 is a type V CRISPR effector protein that has different target and guide RNA requirements compared to Cas9, thus offering an addition tool for precision genome editing. Here Kim et al. show that Cpf1 ribonucleoprotein can be introduced into protoplasts and used for transgene-free gene editing in plants.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.

          Programmable clustered regularly interspaced short palindromic repeats (CRISPR) Cpf1 endonucleases are single-RNA-guided (crRNA) enzymes that recognize thymidine-rich protospacer-adjacent motif (PAM) sequences and produce cohesive double-stranded breaks (DSBs). Genome editing with CRISPR-Cpf1 endonucleases could provide an alternative to CRISPR-Cas9 endonucleases, but the determinants of targeting specificity are not well understood. Using mismatched crRNAs we found that Cpf1 could tolerate single or double mismatches in the 3' PAM-distal region, but not in the 5' PAM-proximal region. Genome-wide analysis of cleavage sites in vitro for eight Cpf1 nucleases using Digenome-seq revealed that there were 6 (LbCpf1) and 12 (AsCpf1) cleavage sites per crRNA in the human genome, fewer than are present for Cas9 nucleases (>90). Most Cpf1 off-target cleavage sites did not produce mutations in cells. We found mismatches in either the 3' PAM-distal region or in the PAM sequence of 12 off-target sites that were validated in vivo. Off-target effects were completely abrogated by using preassembled, recombinant Cpf1 ribonucleoproteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

            Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites.

              We present Cas-Designer, a user-friendly program to aid researchers in choosing appropriate target sites in a gene of interest for type II CRISPR/Cas-derived RNA-guided endonucleases, which are now widely used for biomedical research and biotechnology. Cas-Designer rapidly provides the list of all possible guide RNA sequences in a given input DNA sequence and their potential off-target sites including bulge-type sites in a genome of choice. In addition, the program assigns an out-of-frame score to each target site to help users choose appropriate sites for gene knockout. Cas-Designer shows the results in an interactive table and provides user-friendly filter functions.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                16 February 2017
                2017
                : 8
                : 14406
                Affiliations
                [1 ]Center for Genome Engineering, Institute for Basic Science , 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 34047, South Korea
                [2 ]Department of Chemistry, Seoul National University , Seoul 08826, South Korea
                Author notes
                Article
                ncomms14406
                10.1038/ncomms14406
                5316869
                28205546
                501686aa-a092-4123-9661-7a0181d80ac0
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 10 August 2016
                : 22 December 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article