14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      THOC5, a member of the mRNA export complex, contributes to processing of a subset of wingless/integrated (Wnt) target mRNAs and integrity of the gut epithelial barrier

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          THO (Suppressors of the transcriptional defects of hpr1 delta by overexpression) complex 5 (THOC5), an mRNA export protein, is involved in the expression of only 1% of all genes. Using an interferon inducible knockout mouse system, we have previously shown that THOC5 is an essential element in the maintenance of hematopoietic stem cells and cytokine-mediated hematopoiesis in adult mice. Here we interrogate THOC5 function in cell differentiation beyond the hematopoietic system and study pathological changes caused by THOC5 deficiency.

          Results

          To examine whether THOC5 plays a role in general differentiation processes, we generated tamoxifen inducible THOC5 knockout mice. We show here that the depletion of THOC5 impaired not only hematopoietic differentiation, but also differentiation and self renewal of the gut epithelium. Depletion of the THOC5 gene did not cause pathological alterations in liver or kidney.

          We further show that THOC5 is indispensable for processing of mRNAs induced by Wnt (wingless/integrated) signaling which play key roles in epithelial cell differentiation/proliferation. A subset of Wnt target mRNAs, SRY-box containing gene 9 ( Sox9), and achaete-scute complex homolog 2 ( Ascl2), but not Fibronectin 1 (Fn1), were down-regulated in THOC5 knockout intestinal cells. The down-regulated Wnt target mRNAs were able to bind to THOC5. Furthermore, pathological alterations in the gastrointestinal tract induced translocation of intestinal bacteria and caused sepsis in mice. The bacteria translocation may cause Toll-like receptor activation. We identified one of the Toll-like receptor inducible genes, prostaglandin-endoperoxidase synthase 2 ( Ptgs2 or COX2) transcript as THOC5 target mRNA.

          Conclusion

          THOC5 is indispensable for processing of only a subset of mRNAs, but plays a key role in processing of mRNAs inducible by Wnt signals. Furthermore, THOC5 is dispensable for general mRNA export in terminally differentiated organs, indicating that multiple mRNA export pathways exist. These data imply that THOC5 may be a useful tool for studying intestinal stem cells, for modifying the differentiation processes and for cancer therapy.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          IFNalpha activates dormant haematopoietic stem cells in vivo.

          Maintenance of the blood system is dependent on dormant haematopoietic stem cells (HSCs) with long-term self-renewal capacity. After injury these cells are induced to proliferate to quickly re-establish homeostasis. The signalling molecules promoting the exit of HSCs out of the dormant stage remain largely unknown. Here we show that in response to treatment of mice with interferon-alpha (IFNalpha), HSCs efficiently exit G(0) and enter an active cell cycle. HSCs respond to IFNalpha treatment by the increased phosphorylation of STAT1 and PKB/Akt (also known as AKT1), the expression of IFNalpha target genes, and the upregulation of stem cell antigen-1 (Sca-1, also known as LY6A). HSCs lacking the IFNalpha/beta receptor (IFNAR), STAT1 (ref. 3) or Sca-1 (ref. 4) are insensitive to IFNalpha stimulation, demonstrating that STAT1 and Sca-1 mediate IFNalpha-induced HSC proliferation. Although dormant HSCs are resistant to the anti-proliferative chemotherapeutic agent 5-fluoro-uracil, HSCs pre-treated (primed) with IFNalpha and thus induced to proliferate are efficiently eliminated by 5-fluoro-uracil exposure in vivo. Conversely, HSCs chronically activated by IFNalpha are functionally compromised and are rapidly out-competed by non-activatable Ifnar(-/-) cells in competitive repopulation assays. Whereas chronic activation of the IFNalpha pathway in HSCs impairs their function, acute IFNalpha treatment promotes the proliferation of dormant HSCs in vivo. These data may help to clarify the so far unexplained clinical effects of IFNalpha on leukaemic cells, and raise the possibility for new applications of type I interferons to target cancer stem cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcription factor achaete scute-like 2 controls intestinal stem cell fate.

            The small intestinal epithelium is the most rapidly self-renewing tissue of mammals. Proliferative cells are confined to crypts, while differentiated cell types predominantly occupy the villi. We recently demonstrated the existence of a long-lived pool of cycling stem cells defined by Lgr5 expression and intermingled with post-mitotic Paneth cells at crypt bottoms. We have now determined a gene signature for these Lgr5 stem cells. One of the genes within this stem cell signature is the Wnt target Achaete scute-like 2 (Ascl2). Transgenic expression of the Ascl2 transcription factor throughout the intestinal epithelium induces crypt hyperplasia and ectopic crypts on villi. Induced deletion of the Ascl2 gene in adult small intestine leads to disappearance of the Lgr5 stem cells within days. The combined results from these gain- and loss-of-function experiments imply that Ascl2 controls intestinal stem cell fate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes

              TCF and SOX proteins belong to the high mobility group box transcription factor family. Whereas TCFs, the transcriptional effectors of the Wnt pathway, have been widely implicated in the development, homeostasis and disease of the intestine epithelium, little is known about the function of the SOX proteins in this tissue. Here, we identified SOX9 in a SOX expression screening in the mouse fetal intestine. We report that the SOX9 protein is expressed in the intestinal epithelium in a pattern characteristic of Wnt targets. We provide in vitro and in vivo evidence that a bipartite β-catenin/TCF4 transcription factor, the effector of the Wnt signaling pathway, is required for SOX9 expression in epithelial cells. Finally, in colon epithelium-derived cells, SOX9 transcriptionally represses the CDX2 and MUC2 genes, normally expressed in the mature villus cells of the intestinal epithelium, and may therefore contribute to the Wnt-dependent maintenance of a progenitor cell phenotype.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Cell Biol
                BMC Cell Biol
                BMC Cell Biology
                BioMed Central
                1471-2121
                2013
                22 November 2013
                : 14
                : 51
                Affiliations
                [1 ]Institut fuer Biochemie, Medizinische Hochschule Hannover, OE4310 Carl-Neuberg-Str. 1, Hannover D-30623, Germany
                [2 ]Pädiatrische Pneumologie, Medizinische Hochschule Hannover, OE6710 Carl-Neuberg-Str. 1, Hannover D-30623, Germany
                [3 ]Institut fuer Immunologie, Medizinische Hochschule Hannover, OE5240 Carl-Neuberg-Str. 1, Hannover D-30623, Germany
                [4 ]Unfallchirurgie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, Hannover D-30623, Germany
                [5 ]Institute of Veterinary Pathology, Freie Universitaet Berlin, Robert-von-Ostertag- Str. 15, Berlin D-14163, Germany
                Article
                1471-2121-14-51
                10.1186/1471-2121-14-51
                4222586
                24267292
                5021b2fc-e4f4-49e7-80ff-9dfc60383e10
                Copyright © 2013 Saran et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 10 September 2013
                : 19 November 2013
                Categories
                Research Article

                Cell biology
                mrna export protein thoc5,tamoxifen inducible knockout mice,gastrointestinal tract,wnt target mrnas,sepsis

                Comments

                Comment on this article