+1 Recommend
1 collections

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)


      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Obinutuzumab in chronic lymphocytic leukemia: design, development and place in therapy


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          For decades, treatment of chronic lymphocytic leukemia (CLL) has been based on chemotherapy. This changed when the first CD20 antibody rituximab was introduced. Since 2008, the combination of chemotherapy and CD20 antibodies has become the standard of care for most patients, and a significant fraction of patients had very long-lasting remissions after chemoimmunotherapy. Despite the improvement of response rates and overall survival (OS) by the use of chemoimmunotherapy, most CLL patients will relapse eventually. One approach to achieve more durable responses was the development of obinutuzumab (GA101), a new type of CD20 antibody that has unique molecular and functional characteristics. Obinutuzumab is a type II fully humanized CD20 antibody that binds to a partly different epitope of the CD20 protein than rituximab and due to its glycoengineered design induces greater antibody-dependent cell-mediated cytotoxicity (ADCC). Initial preclinical observations of a more effective B-cell depletion have been successfully reproduced in clinical trials with CLL patients. This review summarizes results of preclinical as well as clinical studies with obinutuzumab and provides an outlook on its future role in the therapy of CLL.

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.

          Antibody-mediated cellular cytotoxicity (ADCC), a key immune effector mechanism, relies on the binding of antigen-antibody complexes to Fcγ receptors expressed on immune cells. Antibodies lacking core fucosylation show a large increase in affinity for FcγRIIIa leading to an improved receptor-mediated effector function. Although afucosylated IgGs exist naturally, a next generation of recombinant therapeutic, glycoenginereed antibodies is currently being developed to exploit this finding. In this study, the crystal structures of a glycosylated Fcγ receptor complexed with either afucosylated or fucosylated Fc were determined allowing a detailed, molecular understanding of the regulatory role of Fc-oligosaccharide core fucosylation in improving ADCC. The structures reveal a unique type of interface consisting of carbohydrate-carbohydrate interactions between glycans of the receptor and the afucosylated Fc. In contrast, in the complex structure with fucosylated Fc, these contacts are weakened or nonexistent, explaining the decreased affinity for the receptor. These findings allow us to understand the higher efficacy of therapeutic antibodies lacking the core fucose and also suggest a unique mechanism by which the immune system can regulate antibody-mediated effector functions.
            • Record: found
            • Abstract: found
            • Article: not found

            The B-cell receptor signaling pathway as a therapeutic target in CLL.

            Targeted therapy with imatinib and other selective tyrosine kinase inhibitors has transformed the treatment of chronic myeloid leukemia. Unlike chronic myeloid leukemia, chronic lymphocytic leukemia (CLL) lacks a common genetic aberration amenable to therapeutic targeting. However, our understanding of normal B-cell versus CLL biology points to differences in properties of B-cell receptor (BCR) signaling that may be amenable to selective therapeutic targeting. The application of mouse models has further expanded this understanding and provides information about targets in the BCR signaling pathway that may have other important functions in cell development or long-term health. In addition, overexpression or knockout of selected targets offers the potential to validate targets genetically using new mouse models of CLL. The initial success of BCR-targeted therapies has promoted much excitement in the field of CLL. At the present time, GS-1101, which reversibly inhibits PI3Kδ, and ibrutinib (PCI-32765), an irreversible inhibitor of Bruton tyrosine kinase, have generated the most promising early results in clinical trials including predominately refractory CLL where durable disease control has been observed. This review provides a summary of BCR signaling, tools for studying this pathway relevant to drug development in CLL, and early progress made with therapeutics targeting BCR-related kinases.
              • Record: found
              • Abstract: found
              • Article: not found

              Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study.

              Ibrutinib, an orally administered covalent inhibitor of Bruton's tyrosine kinase (BTK), is an effective treatment for relapsed chronic lymphocytic leukaemia (CLL). We investigated the activity and safety of the combination of ibrutinib with the monoclonal antibody rituximab in patients with high-risk CLL.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                25 January 2017
                : 11
                : 295-304
                German CLL Study Group, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
                Author notes
                Correspondence: Valentin Goede, German CLL Study Group, Department I of Internal Medicine, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany, Email valentin.goede@ 123456uk-koeln.de
                © 2017 Al-Sawaf et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.


                Pharmacology & Pharmaceutical medicine
                chronic lymphocytic leukemia,ga101,obinutuzumab,cd20 antibody


                Comment on this article