3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antibody oriented immobilization on gold using the reaction between carbon disulfide and amine groups and its application in immunosensing.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carbon disulfide (CS(2)) can spontaneously react with amine groups to form dithiocarbamates on gold surface, providing the possibility to immobilize some compounds with primary or secondary amine groups in one step. Using this principle, an immunosensor interface prepared for immunoglobulin G (IgG) sensing surface toward anti-IgG has been fabricated for the first time by simply immersing gold slides into a mixed aqueous solution of CS(2) and protein A, followed by incubation in immunoglobulin G solution. The reaction between CS(2) and protein A has been followed by UV-vis spectroscopy, whereas cyclic voltammetry has been employed in the characterization of the modified gold surface with CS(2) and protein A, both methods indicating that protein A immobilization is implemented by CS(2). Conventional ellipsometry, atomic force microscopy (AFM), as well as surface plasmon resonance (SPR) have been used to evaluate the specific binding of protein A with IgG and IgG with anti-IgG, revealing that IgG is specifically captured to form the biosensing interface, maintaining its bioactivity. Compared to direct adsorption of IgG on the gold surface, the IgG sensing surface constructed of CS(2) and protein A is far more sensitive to capture anti-IgG as its target molecule. In addition, the modified surface is proven to have good capability to inhibit nonspecific adsorption, as supported by control experiments using lysozyme and BSA. To conclude, antibody immobilization using this one-step method has potential as a simple and convenient surface modification approach for immunosensor development.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir : the ACS journal of surfaces and colloids
          American Chemical Society (ACS)
          1520-5827
          0743-7463
          Dec 21 2012
          : 28
          : 51
          Affiliations
          [1 ] NML, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China.
          Article
          10.1021/la303032f
          23210719
          502749fb-ec90-4677-a17a-9aadca492335
          History

          Comments

          Comment on this article