0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Promising neuroprotective effects of oligostilbenes

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides.

          Several epidemiological studies indicate that moderate consumption of wine is associated with a lower incidence of Alzheimer's disease. Wine is enriched in antioxidant compounds with potential neuroprotective activities. However, the exact molecular mechanisms involved in the beneficial effects of wine intake on the neurodegenerative process in Alzheimer's disease brain remain to be clearly defined. Here we show that resveratrol (trans-3,4',5-trihydroxystilbene), a naturally occurring polyphenol mainly found in grapes and red wine, markedly lowers the levels of secreted and intracellular amyloid-beta (Abeta) peptides produced from different cell lines. Resveratrol does not inhibit Abeta production, because it has no effect on the Abeta-producing enzymes beta- and gamma-secretases, but promotes instead intracellular degradation of Abeta via a mechanism that involves the proteasome. Indeed, the resveratrol-induced decrease of Abeta could be prevented by several selective proteasome inhibitors and by siRNA-directed silencing of the proteasome subunit beta5. These findings demonstrate a proteasome-dependent anti-amyloidogenic activity of resveratrol and suggest that this natural compound has a therapeutic potential in Alzheimer's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism.

            Resistance of plants to infection by phytopathogenic microorganisms is the result of multiple defense reactions comprising both constitutive and inducible barriers. In grapevine, the most frequently observed and best characterized defense mechanisms are the accumulation of phytoalexins and the synthesis of PR-proteins. Particular attention has been given here to stilbene phytoalexins produced by Vitaceae, specifically, their pathway of biosynthesis (including stilbene phytoalexin gene transfer experiments to other plants) and their biological activity together with fungal metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats.

              The present study was undertaken to investigate the neuroprotective effects of resveratrol on 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease in rats. 6-OHDA-induced Parkinson's disease rat model involves chronic inflammation, mitochondrial dysfunction, and oxidative stress, and the loss of the dopaminergic neurons in the substantia nigra is the predominant lesion. Resveratrol has been shown to have anti-inflammatory actions, and thus was tested for its beneficial effects using 6-OHDA-induced Parkinson's disease rat model. Adult Sprague-Dawley (SD) rats were unilaterally injected with 6-OHDA (5 microg/2 microl) into the right striatum, and the striatum damage was assessed by rotational test, ultrahistopathology, and molecular alterations. Resveratrol (10, 20 and 40 mg/kg) was then given orally to Parkinson's disease rats, daily for 10 weeks to examine the protective effects. Rotational test (turns of rats) showed that resveratrol significantly attenuated apomorphine-induced turns of rats in 6-OHDA-injuried Parkinson's disease rat model as early as two weeks of administration. Ultrastructural analysis showed that resveratrol alleviated 6-OHDA-induced chromatin condensation, mitochondrial tumefaction and vacuolization of dopaminergic neurons in rat substantia nigra. Furthermore, resveratrol treatment also significantly decreased the levels of COX-2 and TNF-alpha mRNA in the substantia nigra as detected by real-time RT-PCR. COX-2 protein expression in the substantia nigra was also decreased as evidenced by Western blotting. These results demonstrate that resveratrol exerts a neuroprotective effect on 6-OHDA-induced Parkinson's disease rat model, and this protection is related to the reduced inflammatory reaction.
                Bookmark

                Author and article information

                Journal
                Nutrition and Aging
                NUA
                IOS Press
                18797717
                18797725
                May 21 2015
                May 21 2015
                : 3
                : 1
                : 49-54
                Article
                10.3233/NUA-150050
                50455b63-6ef4-4e96-ad42-f64906cc3ee0
                © 2015
                History

                Comments

                Comment on this article