14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Glycan modulation and sulfoengineering of anti–HIV-1 monoclonal antibody PG9 in plants

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Broadly neutralizing anti-HIV-1 monoclonal antibodies, such as PG9, and its derivative RSH hold great promise in AIDS therapy and prevention. An important feature related to the exceptional efficacy of PG9 and RSH is the presence of sulfated tyrosine residues in their antigen-binding regions. To maximize antibody functionalities, we have now produced glycan-optimized, fucose-free versions of PG9 and RSH in Nicotiana benthamiana. Both antibodies were efficiently sulfated in planta on coexpression of an engineered human tyrosylprotein sulfotransferase, resulting in antigen-binding and virus neutralization activities equivalent to PG9 synthesized by mammalian cells ((CHO)PG9). Based on the controlled production of both sulfated and nonsulfated variants in plants, we could unequivocally prove that tyrosine sulfation is critical for the potency of PG9 and RSH. Moreover, the fucose-free antibodies generated in N. benthamiana are capable of inducing antibody-dependent cellular cytotoxicity, an activity not observed for (CHO)PG9. Thus, tailoring of the antigen-binding site combined with glycan modulation and sulfoengineering yielded plant-produced anti-HIV-1 antibodies with effector functions superior to PG9 made in CHO cells.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity.

            Broadly neutralizing antibodies (bNAbs) against HIV-1 provide both effective pre-exposure prophylaxis and treatment of HIV-1 infection in murine and nonhuman primate models, suggesting their potential use in humans. Although much is known about the role of variable domains in the neutralization breadth and potency of these bNAbs, the contribution of Fc domains to their activities is, by contrast, poorly characterized. Assessment of the in vivo activity of several bNAbs revealed that FcγR-mediated effector function contributes substantially to their capacity to block viral entry, suppress viremia, and confer therapeutic activity. Enhanced in vivo potency of anti-HIV-1 bNAbs was associated with preferential engagement of activating, but not inhibitory FcγRs, and Fc domain-engineered bNAb variants with selective binding capacity for activating FcγRs displayed augmented protective activity. These findings reveal key roles for Fc effector function in the in vivo activity of anti-HIV-1 bNAbs and provide strategies for generating bNAbs with improved efficacy. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research.

              Nicotiana benthamiana is a widely used model plant species for the study of fundamental questions in molecular plant-microbe interactions and other areas of plant biology. This popularity derives from its well-characterized susceptibility to diverse pathogens and, especially, its amenability to virus-induced gene silencing and transient protein expression methods. Here, we report the generation of a 63-fold coverage draft genome sequence of N. benthamiana and its availability on the Sol Genomics Network for both BLAST searches and for downloading to local servers. The estimated genome size of N. benthamiana is 3 Gb (gigabases). The current assembly consists of approximately 141,000 scaffolds, spanning 2.6 Gb with 50% of the genome sequence contained within scaffolds >89 kilobases. Of the approximately 16,000 N. benthamiana unigenes available in GenBank, >90% are represented in the assembly. The usefulness of the sequence was demonstrated by the retrieval of N. benthamiana orthologs for 24 immunity-associated genes from other species including Ago2, Ago7, Bak1, Bik1, Crt1, Fls2, Pto, Prf, Rar1, and mitogen-activated protein kinases. The sequence will also be useful for comparative genomics in the Solanaceae family as shown here by the discovery of microsynteny between N. benthamiana and tomato in the region encompassing the Pto and Prf genes.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 13 2015
                October 13 2015
                October 13 2015
                September 28 2015
                : 112
                : 41
                : 12675-12680
                Article
                10.1073/pnas.1509090112
                4611627
                26417081
                50462069-64b5-4a4a-b7ec-e3f3377068a7
                © 2015

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article