0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Concurrent minimal change nephrotic syndrome and type 1 diabetes mellitus in an adult Japanese woman: a case report

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Concurrent type 1 diabetes mellitus (T1DM) and idiopathic nephrotic syndrome is rare, and most previously reported cases were in children. We report the case of an adult woman who developed T1DM and minimal change nephrotic syndrome (MCNS) nearly simultaneously.

          Case presentation

          A 24-year-old woman had first presented to another hospital with nausea, vomiting, and fatigue. She was diagnosed with diabetic ketoacidosis and T1DM on the basis of her hyperglycemia, ketoacidosis, and positive anti-glutamic acid decarboxylase antibody test result. Rapid infusion of normal saline and insulin administration alleviated hyperglycemia and ketoacidosis. Two weeks after admission, however, she developed nephrotic syndrome (NS) with rapidly decreasing urine volume. She was referred to our hospital with a diagnosis of acute kidney injury. Although she temporarily required dialysis and high doses of insulin, within 1 month NS and acute kidney injury had been alleviated by oral prednisolone and low-density lipoprotein apheresis. Renal biopsy showed minor glomerular abnormalities without diabetic nephropathy, so we diagnosed her with MCNS. Seven weeks after the discharge, NS relapsed, and cyclosporine was added to prednisolone. However, NS relapsed twice within the next 4 months, so we started her on rituximab. At 6 months after initiating rituximab therapy, she remained in complete remission.

          Her mother also had T1DM but not MCNS. The patient had HLA-DRB1*09:01/09:01, DQB1*03:03/03:03, and her mother had HLA-DRB1*04:05/09:01, DQB1*03:03/04:01.

          Conclusions

          Concurrent T1DM and MCNS is rare and their coexistence might be coincidental. Alternatively, they might have been caused by an underlying, unidentified genetic predisposition. Previous reports and our patient’s findings suggest that specific HLA alleles and haplotypes or a Th1/Th2 imbalance might be associated with T1DM and MCNS that occurred nearly simultaneously.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus.

          Type 1 diabetes mellitus is a chronic autoimmune disease caused by the pathogenic action of T lymphocytes on insulin-producing beta cells. Previous clinical studies have shown that continuous immune suppression temporarily slows the loss of insulin production. Preclinical studies suggested that a monoclonal antibody against CD3 could reverse hyperglycemia at presentation and induce tolerance to recurrent disease. We studied the effects of a nonactivating humanized monoclonal antibody against CD3--hOKT3gamma1(Ala-Ala)--on the loss of insulin production in patients with type 1 diabetes mellitus. Within 6 weeks after diagnosis, 24 patients were randomly assigned to receive either a single 14-day course of treatment with the monoclonal antibody or no antibody and were studied during the first year of disease. Treatment with the monoclonal antibody maintained or improved insulin production after one year in 9 of the 12 patients in the treatment group, whereas only 2 of the 12 controls had a sustained response (P=0.01). The treatment effect on insulin responses lasted for at least 12 months after diagnosis. Glycosylated hemoglobin levels and insulin doses were also reduced in the monoclonal-antibody group. No severe side effects occurred, and the most common side effects were fever, rash, and anemia. Clinical responses were associated with a change in the ratio of CD4+ T cells to CD8+ T cells 30 and 90 days after treatment. Treatment with hOKT3gamma1(Ala-Ala) mitigates the deterioration in insulin production and improves metabolic control during the first year of type 1 diabetes mellitus in the majority of patients. The mechanism of action of the anti-CD3 monoclonal antibody may involve direct effects on pathogenic T cells, the induction of populations of regulatory cells, or both.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes.

            Type 1 diabetes mellitus is a T-cell-mediated autoimmune disease that leads to a major loss of insulin-secreting beta cells. The further decline of beta-cell function after clinical onset might be prevented by treatment with CD3 monoclonal antibodies, as suggested by the results of a phase 1 study. To provide proof of this therapeutic principle at the metabolic level, we initiated a phase 2 placebo-controlled trial with a humanized antibody, an aglycosylated human IgG1 antibody directed against CD3 (ChAglyCD3). In a multicenter study, 80 patients with new-onset type 1 diabetes were randomly assigned to receive placebo or ChAglyCD3 for six consecutive days. Patients were followed for 18 months, during which their daily insulin needs and residual beta-cell function were assessed according to glucose-clamp-induced C-peptide release before and after the administration of glucagon. At 6, 12, and 18 months, residual beta-cell function was better maintained with ChAglyCD3 than with placebo. The insulin dose increased in the placebo group but not in the ChAglyCD3 group. This effect of ChAglyCD3 was most pronounced among patients with initial residual beta-cell function at or above the 50th percentile of the 80 patients. In this subgroup, the mean insulin dose at 18 months was 0.22 IU per kilogram of body weight per day with ChAglyCD3, as compared with 0.61 IU per kilogram with placebo (P<0.001). In this subgroup, 12 of 16 patients who received ChAglyCD3 (75 percent) received minimal doses of insulin (< or =0.25 IU per kilogram per day) as compared with none of the 21 patients who received placebo. Administration of ChAglyCD3 was associated with a moderate "flu-like" syndrome and transient symptoms of Epstein-Barr viral mononucleosis. Short-term treatment with CD3 antibody preserves residual beta-cell function for at least 18 months in patients with recent-onset type 1 diabetes. Copyright 2005 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial.

              The immunopathogenesis of type 1 diabetes mellitus is associated with T-cell autoimmunity. To be fully active, immune T cells need a co-stimulatory signal in addition to the main antigen-driven signal. Abatacept modulates co-stimulation and prevents full T-cell activation. We evaluated the effect of abatacept in recent-onset type 1 diabetes. In this multicentre, double-blind, randomised controlled trial, patients aged 6-45 years recently diagnosed with type 1 diabetes were randomly assigned (2:1) to receive abatacept (10 mg/kg, maximum 1000 mg per dose) or placebo infusions intravenously on days 1, 14, 28, and monthly for a total of 27 infusions over 2 years. Computer-generated permuted block randomisation was used, with a block size of 3 and stratified by participating site. Neither patients nor research personnel were aware of treatment assignments. The primary outcome was baseline-adjusted geometric mean 2-h area-under-the-curve (AUC) serum C-peptide concentration after a mixed-meal tolerance test at 2 years' follow-up. Analysis was by intention to treat for all patients for whom data were available. This trial is registered at ClinicalTrials.gov, NCT00505375. 112 patients were assigned to treatment groups (77 abatacept, 35 placebo). Adjusted C-peptide AUC was 59% (95% CI 6·1-112) higher at 2 years with abatacept (n=73, 0·378 nmol/L) than with placebo (n=30, 0·238 nmol/L; p=0·0029). The difference between groups was present throughout the trial, with an estimated 9·6 months' delay (95% CI 3·47-15·6) in C-peptide reduction with abatacept. There were few infusion-related adverse events (36 reactions occurred in 17 [22%] patients on abatacept and 11 reactions in six [17%] on placebo). There was no increase in infections (32 [42%] patients on abatacept vs 15 [43%] on placebo) or neutropenia (seven [9%] vs five [14%]). Co-stimulation modulation with abatacept slowed reduction in β-cell function over 2 years. The beneficial effect suggests that T-cell activation still occurs around the time of clinical diagnosis of type 1 diabetes. Yet, despite continued administration of abatacept over 24 months, the decrease in β-cell function with abatacept was parallel to that with placebo after 6 months of treatment, causing us to speculate that T-cell activation lessens with time. Further observation will establish whether the beneficial effect continues after cessation of abatacept infusions. US National Institutes of Health. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                ryuzou_nishizono@med.miyazaki-u.ac.jp
                Journal
                BMC Nephrol
                BMC Nephrol
                BMC Nephrology
                BioMed Central (London )
                1471-2369
                23 September 2020
                23 September 2020
                2020
                : 21
                : 410
                Affiliations
                [1 ]GRID grid.410849.0, ISNI 0000 0001 0657 3887, Department of Nephrology, Faculty of Medicine, , University of Miyazaki, ; Miyazaki, Japan
                [2 ]GRID grid.416001.2, ISNI 0000 0004 0596 7181, Dialysis Division, , University of Miyazaki Hospital, ; Miyazaki, Japan
                [3 ]GRID grid.410849.0, ISNI 0000 0001 0657 3887, Department of Hemovascular Medicine and Artificial Organs, Faculty of Medicine, , University of Miyazaki, ; Miyazaki, Japan
                Author information
                http://orcid.org/0000-0002-8185-618X
                Article
                2071
                10.1186/s12882-020-02071-6
                7510261
                32967631
                50542eeb-9616-4027-baca-1c9bd4b8c17c
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 19 April 2020
                : 15 September 2020
                Categories
                Case Report
                Custom metadata
                © The Author(s) 2020

                Nephrology
                type 1 diabetes mellitus,steroid-sensitive nephrotic syndrome,minimal change nephrotic syndrome,genetic factors

                Comments

                Comment on this article