37
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The BRAF V600E mutation causes impaired expression of sodium iodide symporter (NIS) and radioiodine refractoriness of thyroid cancer, but the underlying mechanism remains undefined. In this study, we hypothesized that histone deacetylation at the NIS ( SLC5A5) promoter was the mechanism. Using the chromatin immunoprecipitation approach, we examined histone acetylation status on the lysine residues H3K9/14, H3K18, total H4, and H4K16 at the NIS promoter under the influence of BRAF V600E. We found that expression of stably or transiently transfected BRAF V600E inhibited NIS expression while the deacetylase inhibitor SAHA stimulated NIS expression in PCCL3 rat thyroid cells. Although BRAF V600E enhanced global histone acetylation, it caused histone deacetylation at the NIS promoter while SAHA caused acetylation in the cells. In human thyroid cancer BCPAP cells harboring homozygous BRAF V600E mutation, BRAF V600E inhibitor, PLX4032, and MEK inhibitor, AZD6244, increased histone acetylation of the NIS promoter, suggesting that BRAF V600E normally maintained histone in a deacetylated state at the NIS promoter. The regions most commonly affected with deacetylation by BRAF V600E were the transcriptionally active areas upstream of the translation start that contained important transcription factor binding sites, including nucleotides −297/−107 in the rat NIS promoter and −692/−370 in the human NIS promoter. Our findings not only reveal an epigenetic mechanism for BRAF V600E-promoted NIS silencing involving histone deacetylation at critical regulatory regions of the NIS promoter but also provide further support for our previously proposed combination therapy targeting major signaling pathways and histone deacetylase to restore thyroid gene expression for radioiodine treatment of thyroid cancer.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.

          CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.
            • Record: found
            • Abstract: found
            • Article: not found

            BRAF mutation in thyroid cancer.

            M Xing (2005)
            Genetic alteration is the driving force for thyroid tumorigenesis and progression, based upon which novel approaches to the management of thyroid cancer can be developed. A recent important genetic finding in thyroid cancer is the oncogenic T1799A transversion mutation of BRAF (the gene for the B-type Raf kinase, BRAF). Since the initial report of this mutation in thyroid cancer 2 years ago, rapid advancements have been made. BRAF mutation is the most common genetic alteration in thyroid cancer, occurring in about 45% of sporadic papillary thyroid cancers (PTCs), particularly in the relatively aggressive subtypes, such as the tall-cell PTC. This mutation is mutually exclusive with other common genetic alterations, supporting its independent oncogenic role, as demonstrated by transgenic mouse studies that showed BRAF mutation-initiated development of PTC and its transition to anaplastic thyroid cancer. BRAF mutation is mutually exclusive with RET/PTC rearrangement, and also displays a reciprocal age association with this common genetic alteration in thyroid cancer. The T1799A BRAF mutation occurs exclusively in PTC and PTC-derived anaplastic thyroid cancer and is a specific diagnostic marker for this cancer when identified in cytological and histological specimens. This mutation is associated with a poorer clinicopathological outcome and is a novel independent molecular prognostic marker in the risk evaluation of thyroid cancer. Moreover, preclinical and clinical evaluations of the therapeutic value of novel specific mitogen-activated protein kinase pathway inhibitors in thyroid cancer are anticipated. This newly discovered BRAF mutation may prove to have an important impact on thyroid cancer in the clinic.
              • Record: found
              • Abstract: found
              • Article: not found

              Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer.

              BRAF V600E is a prominent oncogene in papillary thyroid cancer (PTC), but its role in PTC-related patient mortality has not been established. To investigate the relationship between BRAF V600E mutation and PTC-related mortality. Retrospective study of 1849 patients (1411 women and 438 men) with a median age of 46 years (interquartile range, 34-58 years) and an overall median follow-up time of 33 months (interquartile range, 13-67 months) after initial treatment at 13 centers in 7 countries between 1978 and 2011. Patient deaths specifically caused by PTC. Overall, mortality was 5.3% (45/845; 95% CI, 3.9%-7.1%) vs 1.1% (11/1004; 95% CI, 0.5%-2.0%) (P < .001) in BRAF V600E-positive vs mutation-negative patients. Deaths per 1000 person-years in the analysis of all PTC were 12.87 (95% CI, 9.61-17.24) vs 2.52 (95% CI, 1.40-4.55) in BRAF V600E-positive vs mutation-negative patients; the hazard ratio (HR) was 2.66 (95% CI, 1.30-5.43) after adjustment for age at diagnosis, sex, and medical center. Deaths per 1000 person-years in the analysis of the conventional variant of PTC were 11.80 (95% CI, 8.39-16.60) vs 2.25 (95% CI, 1.01-5.00) in BRAF V600E-positive vs mutation-negative patients; the adjusted HR was 3.53 (95% CI, 1.25-9.98). When lymph node metastasis, extrathyroidal invasion, and distant metastasis were also included in the model, the association of BRAF V600E with mortality for all PTC was no longer significant (HR, 1.21; 95% CI, 0.53-2.76). A higher BRAF V600E-associated patient mortality was also observed in several clinicopathological subcategories, but statistical significance was lost with adjustment for patient age, sex, and medical center. For example, in patients with lymph node metastasis, the deaths per 1000 person-years were 26.26 (95% CI, 19.18-35.94) vs 5.93 (95% CI, 2.96-11.86) in BRAF V600E-positive vs mutation-negative patients (unadjusted HR, 4.43 [95% CI, 2.06-9.51]; adjusted HR, 1.46 [95% CI, 0.62-3.47]). In patients with distant tumor metastasis, deaths per 1000 person-years were 87.72 (95% CI, 62.68-122.77) vs 32.28 (95% CI, 16.14-64.55) in BRAF V600E-positive vs mutation-negative patients (unadjusted HR, 2.63 [95% CI, 1.21-5.72]; adjusted HR, 0.84 [95% CI, 0.27-2.62]). In this retrospective multicenter study, the presence of the BRAF V600E mutation was significantly associated with increased cancer-related mortality among patients with PTC. Because overall mortality in PTC is low and the association was not independent of tumor features, how to use BRAF V600E to manage mortality risk in patients with PTC is unclear. These findings support further investigation of the prognostic and therapeutic implications of BRAF V600E status in PTC.

                Author and article information

                Journal
                Endocr Relat Cancer
                Endocr. Relat. Cancer
                ERC
                Endocrine-Related Cancer
                Bioscientifica Ltd (Bristol )
                1351-0088
                1479-6821
                April 2014
                15 November 2013
                : 21
                : 2
                : 161-173
                Affiliations
                [1 ]Division of Endocrinology, Diabetes, and Metabolism, Laboratory for Cellular and Molecular Thyroid Research Johns Hopkins University School of Medicine 1830 East Monument Street, Suite 333, Baltimore, Maryland, 21287USA
                [2 ]Department of Endocrinology and Metabolism Changzheng Hospital, the Second Military Medical University ShanghaiChina
                Author notes
                Correspondence should be addressed to M Xing mxing1@ 123456jhmi.edu
                Article
                ERC130399
                10.1530/ERC-13-0399
                3920838
                24243688
                50630cad-b93a-45de-a078-031b96d74f89
                © 2014 The authors

                This work is licensed under a Creative Commons Attribution 3.0 Unported License

                History
                : 11 November 2013
                : 14 November 2013
                Categories
                Research

                Oncology & Radiotherapy
                thyroid cancer,nis gene,braf v600e mutation,histone acetylation,histone deacetylation,radioiodine

                Comments

                Comment on this article

                Related Documents Log