23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes.

      Diabetes
      Blood Glucose, metabolism, Diabetes Mellitus, Type 2, Fatty Acids, Nonesterified, blood, Female, Glucose Clamp Technique, Humans, Hyperinsulinism, Liver Glycogen, biosynthesis, Male, Middle Aged, Postprandial Period, Reference Values

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Decreased skeletal muscle glucose disposal and increased endogenous glucose production (EGP) contribute to postprandial hyperglycemia in type 2 diabetes, but the contribution of hepatic glycogen metabolism remains uncertain. Hepatic glycogen metabolism and EGP were monitored in type 2 diabetic patients and nondiabetic volunteer control subjects (CON) after mixed meal ingestion and during hyperglycemic-hyperinsulinemic-somatostatin clamps applying 13C nuclear magnetic resonance spectroscopy (NMRS) and variable infusion dual-tracer technique. Hepatocellular lipid (HCL) content was quantified by 1H NMRS. Before dinner, hepatic glycogen was lower in type 2 diabetic patients (227 +/- 6 vs. CON: 275 +/- 10 mmol/l liver, P < 0.001). After meal ingestion, net synthetic rates were 0.76 +/- 0.16 (type 2 diabetic patients) and 1.36 +/- 0.15 mg x kg(-1) x min(-1) (CON, P < 0.02), resulting in peak concentrations of 283 +/- 15 and 360 +/- 11 mmol/l liver. Postprandial rates of EGP were approximately 0.3 mg x kg(-1) x min(-1) (30-170 min; P < 0.05 vs. CON) higher in type 2 diabetic patients. Under clamp conditions, type 2 diabetic patients featured approximately 54% lower (P < 0.03) net hepatic glycogen synthesis and approximately 0.5 mg x kg(-1) x min(-1) higher (P < 0.02) EGP. Hepatic glucose storage negatively correlated with HCL content (R = -0.602, P < 0.05). Type 2 diabetic patients exhibit 1) reduction of postprandial hepatic glycogen synthesis, 2) temporarily impaired suppression of EGP, and 3) no normalization of these defects by controlled hyperglycemic hyperinsulinemia. Thus, impaired insulin sensitivity and/or chronic glucolipotoxicity in addition to the effects of an altered insulin-to-glucagon ratio or increased free fatty acids accounts for defective hepatic glycogen metabolism in type 2 diabetic patients.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanism by which metformin reduces glucose production in type 2 diabetes.

          To examine the mechanism by which metformin lowers endogenous glucose production in type 2 diabetic patients, we studied seven type 2 diabetic subjects, with fasting hyperglycemia (15.5 +/- 1.3 mmol/l), before and after 3 months of metformin treatment. Seven healthy subjects, matched for sex, age, and BMI, served as control subjects. Rates of net hepatic glycogenolysis, estimated by 13C nuclear magnetic resonance spectroscopy, were combined with estimates of contributions to glucose production of gluconeogenesis and glycogenolysis, measured by labeling of blood glucose by 2H from ingested 2H2O. Glucose production was measured using [6,6-2H2]glucose. The rate of glucose production was twice as high in the diabetic subjects as in control subjects (0.70 +/- 0.05 vs. 0.36 +/- 0.03 mmol x m(-2) min(-1), P < 0.0001). Metformin reduced that rate by 24% (to 0.53 +/- 0.03 mmol x m(-2) x min(-1), P = 0.0009) and fasting plasma glucose concentration by 30% (to 10.8 +/- 0.9 mmol/l, P = 0.0002). The rate of gluconeogenesis was three times higher in the diabetic subjects than in the control subjects (0.59 +/- 0.03 vs. 0.18 +/- 0.03 mmol x m(-2) min(-1) and metformin reduced that rate by 36% (to 0.38 +/- 0.03 mmol x m(-2) x min(-1), P = 0.01). By the 2H2O method, there was a twofold increase in rates of gluconeogenesis in diabetic subjects (0.42 +/- 0.04 mmol m(-2) x min(-1), which decreased by 33% after metformin treatment (0.28 +/- 0.03 mmol x m(-2) x min(-1), P = 0.0002). There was no glycogen cycling in the control subjects, but in the diabetic subjects, glycogen cycling contributed to 25% of glucose production and explains the differences between the two methods used. In conclusion, patients with poorly controlled type 2 diabetes have increased rates of endogenous glucose production, which can be attributed to increased rates of gluconeogenesis. Metformin lowered the rate of glucose production in these patients through a reduction in gluconeogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes.

            Insulin resistance, a major factor in the pathogenesis of type 2 diabetes mellitus, is due mostly to decreased stimulation of glycogen synthesis in muscle by insulin. The primary rate-controlling step responsible for the decrease in muscle glycogen synthesis is not known, although hexokinase activity and glucose transport have been implicated. We used a novel nuclear magnetic resonance approach with carbon-13 and phosphorus-31 to measure intramuscular glucose, glucose-6-phosphate, and glycogen concentrations under hyperglycemic conditions (plasma glucose concentration, approximately 180 mg per deciliter [10 mmol per liter]) and hyperinsulinemic conditions in six patients with type 2 diabetes and seven normal subjects. In vivo microdialysis of muscle tissue was used to determine the gradient between plasma and interstitial-fluid glucose concentrations, and open-flow microperfusion was used to determine the concentrations of insulin in interstitial fluid. The time course and concentration of insulin in interstitial fluid were similar in the patients with diabetes and the normal subjects. The rates of whole-body glucose metabolism and muscle glycogen synthesis and the glucose-6-phosphate concentrations in muscle were approximately 80 percent lower in the patients with diabetes than in the normal subjects under conditions of matched plasma insulin concentrations. The mean (+/-SD) intracellular glucose concentration was 2.0+/-8.2 mg per deciliter (0.11+/-0.46 mmol per liter) in the normal subjects. In the patients with diabetes, the intracellular glucose concentration was 4.3+/-4.9 mg per deciliter (0.24+/-0.27 mmol per liter), a value that was 1/25 of what it would be if hexokinase were the rate-controlling enzyme in glucose metabolism. Impaired insulin-stimulated glucose transport is responsible for the reduced rate of insulin-stimulated muscle glycogen synthesis in patients with type 2 diabetes mellitus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes.

              We examined the effect of three months of rosiglitazone treatment (4 mg b.i.d.) on whole-body insulin sensitivity and in vivo peripheral adipocyte insulin sensitivity as assessed by glycerol release in microdialysis from subcutaneous fat during a two-step (20 and 120 mU.m(-2).min(-1)) hyperinsulinemic-euglycemic clamp in nine type 2 diabetic subjects. In addition, the effects of rosiglitazone on liver and muscle triglyceride content were assessed by (1)H-nuclear magnetic resonance spectroscopy. Rosiglitazone treatment resulted in a 68% (P < 0.002) and a 20% (P < 0.016) improvement in insulin-stimulated glucose metabolism during the low- and high- dosage-insulin clamps, respectively, which was associated with approximately 40% reductions in plasma fatty acid concentration (P < 0.05) and hepatic triglyceride content (P < 0.05). These changes were associated with a 39% increase in extramyocellular lipid content (P < 0.05) and a 52% increase in the sensitivity of peripheral adipocytes to the inhibitory effects of insulin on lipolysis (P = 0.04). In conclusion, these results support the hypothesis that thiazolidinediones enhance insulin sensitivity in patients with type 2 diabetes by promoting increased insulin sensitivity in peripheral adipocytes, which results in lower plasma fatty acid concentrations and a redistribution of intracellular lipid from insulin responsive organs into peripheral adipocytes.
                Bookmark

                Author and article information

                Comments

                Comment on this article