31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures.

      ACS Nano
      Aniline Compounds, chemistry, Biosensing Techniques, instrumentation, Conductometry, Equipment Design, Equipment Failure Analysis, Glucose, analysis, Glucose Oxidase, Hydrogels, Microelectrodes, Nanostructures, ultrastructure, Platinum

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucose enzyme biosensors have been shown useful for a range of applications from medical diagnosis, bioprocess monitoring, to beverage industry and environmental monitoring. We present here a highly sensitive glucose enzyme sensor based on Pt nanoparticles (PtNPs)-polyaniline (PAni) hydrogel heterostructures. High-density PtNPs were homogeneously loaded onto the three-dimensional (3D) nanostructured matrix of the PAni hydrogel. The PtNP/PAni hydrogel heterostructure-based glucose sensor synergizes the advantages of both the conducting hydrogel and the nanoparticle catalyst. The porous structure of the PAni hydrogel favored the high density immobilization of the enzyme and the penetration of water-soluble molecules, which helped efficiently catalyze the oxidation of glucose. In addition, the PtNPs catalyzed the decomposition of hydrogen peroxide that was generated during the enzymatic reaction. The transferred charges from these electrochemical processes were efficiently collected by the highly conducting PtNP/PAni hydrogel heterostructures. The glucose enzyme sensor based on this heterostructure exhibited unprecedented sensitivity, as high as 96.1 μA·mM(-1)·cm(-2), with a response time as fast as 3 s, a linear range of 0.01 to 8 mM, and a low detection limit of 0.7 μM.

          Related collections

          Author and article information

          Comments

          Comment on this article