16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In addition to the regulation of social and emotional behaviors, the hypothalamic neuropeptide oxytocin has been shown to stimulate neurogenesis in adult dentate gyrus; however, the mechanisms underlying the action of oxytocin are still unclear. Taking advantage of the conditional knockout mouse model, we show here that endogenous oxytocin signaling functions in a non-cell autonomous manner to regulate survival and maturation of newly generated dentate granule cells in adult mouse hippocampus via oxytocin receptors expressed in CA3 pyramidal neurons. Through bidirectional chemogenetic manipulations, we also uncover a significant role for CA3 pyramidal neuron activity in regulating adult neurogenesis in the dentate gyrus. Retrograde neuronal tracing combined with immunocytochemistry revealed that the oxytocin neurons in the paraventricular nucleus project directly to the CA3 region of the hippocampus. Our findings reveal a critical role for oxytocin signaling in adult neurogenesis.

          Abstract

          Oxytocin (OXT) has been implicated in adult neurogenesis. Here the authors show that CA3 pyramidal cells in the adult mouse hippocampus express OXT receptors and receive inputs from hypothalamic OXT neurons; activation of OXT signaling in CA3 pyramidal cells promotes the survival and maturation of newborn neurons in the dentate gyrus in a non-cell autonomous manner.

          Related collections

          Most cited references 31

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms and functional implications of adult neurogenesis.

          The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the existing neural circuitry. We further address the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator.

            A stereological method for obtaining estimates of the total number of neurons in five major subdivisions of the rat hippocampus is described. The new method, the optical fractionator, combines two recent developments in stereology: a three-dimensional probe for counting neuronal nuclei, the optical disector, and a systematic uniform sampling scheme, the fractionator. The optical disector results in unbiased estimates of neuron number, i.e., estimates that are free of assumptions about neuron size and shape, are unaffected by lost caps and overprojection, and approach the true number of neurons in an unlimited manner as the number of samples is increased. The fractionator involves sampling a known fraction of a structural component. In the case of neuron number, a zero dimensional quantity, it provides estimates that are unaffected by shrinkage before, during, and after processing of the tissue. Because the fractionator involves systematic sampling, it also results in highly efficient estimates. Typically only 100-200 neurons must be counted in an animal to obtain a precision that is compatible with experimental studies. The methodology is compared with those used in earlier works involving estimates of neuron number in the rat hippocampus and a number of new stereological methods that have particular relevance to the quantitative study of the structure of the nervous system are briefly described in an appendix.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus.

              Adult neurogenesis in the dentate gyrus may contribute to hippocampus-dependent functions, yet little is known about when and how newborn neurons are functional because of limited information about the time course of their connectivity. By using retrovirus-mediated gene transduction, we followed the dendritic and axonal growth of adult-born neurons in the mouse dentate gyrus and identified distinct morphological stages that may indicate different levels of connectivity. Axonal projections of newborn neurons reach the CA3 area 10-11 d after viral infection, 5-6 d before the first spines are formed. Quantitative analyses show that the peak of spine growth occurs during the first 3-4 weeks, but further structural modifications of newborn neurons take place for months. Moreover, the morphological maturation is differentially affected by age and experience, as shown by comparisons between adult and postnatal brains and between housing conditions. Our study reveals the key morphological transitions of newborn granule neurons during their course of maturation.
                Bookmark

                Author and article information

                Contributors
                richard@mail.ncku.edu.tw
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                14 September 2017
                14 September 2017
                2017
                : 8
                Affiliations
                [1 ]ISNI 0000 0004 0532 3255, GRID grid.64523.36, Department of Pharmacology, College of Medicine, , National Cheng Kung University, ; Tainan, 70101 Taiwan
                [2 ]ISNI 0000 0004 0532 3255, GRID grid.64523.36, Institute of Basic Medical Sciences, College of Medicine, , National Cheng Kung University, ; Tainan, 70101 Taiwan
                [3 ]ISNI 0000 0001 2248 6943, GRID grid.69566.3a, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, , Tohoku University, ; Miyagi, 981-8555 Japan
                [4 ]ISNI 0000 0000 9337 0481, GRID grid.412896.0, Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, , Taipei Medical University, ; Taipei, 11031 Taiwan
                Article
                675
                10.1038/s41467-017-00675-5
                5599651
                28912554
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized

                Comments

                Comment on this article