28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endogenous Stress Caused by Faulty Oxidation Reactions Fosters Evolution of 2,4-Dinitrotoluene-Degrading Bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Environmental strain Burkholderia sp. DNT mineralizes the xenobiotic compound 2,4-dinitrotoluene (DNT) owing to the catabolic dnt genes borne by plasmid DNT, but the process fails to promote significant growth. To investigate this lack of physiological return of such an otherwise complete metabolic route, cells were exposed to DNT under various growth conditions and the endogenous formation of reactive oxygen species (ROS) monitored in single bacteria. These tests revealed the buildup of a strong oxidative stress in the population exposed to DNT. By either curing the DNT plasmid or by overproducing the second activity of the biodegradation route (DntB) we could trace a large share of ROS production to the first reaction of the route, which is executed by the multicomponent dioxygenase encoded by the dntA gene cluster. Naphthalene, the ancestral substrate of the dioxygenase from which DntA has evolved, also caused significant ROS formation. That both the old and the new substrate brought about a considerable cellular stress was indicative of a still-evolving DntA enzyme which is neither optimal any longer for naphthalene nor entirely advantageous yet for growth of the host strain on DNT. We could associate endogenous production of ROS with likely error-prone repair mechanisms of DNA damage, and the ensuing stress-induced mutagenesis in cells exposed to DNT. It is thus plausible that the evolutionary roadmap for biodegradation of xenobiotic compounds like DNT was largely elicited by mutagenic oxidative stress caused by faulty reactions of precursor enzymes with novel but structurally related substrates-to-be.

          Author Summary

          Many bacteria have acquired the capacity of metabolizing chemical compounds that have never been in the Biosphere before the onset of contemporary synthetic chemistry. However, the factors that shape the new metabolic properties of such microorganisms remain obscure. We examined the performance of a still-evolving metabolic pathway for biodegradation of 2,4-dinitrotoluene (DNT, an archetypal xenobiotic compound) borne by a Burkholderia strain isolated from soil in an ammunition plant. The biodegradation pathway likely arose from a precursor set of genes for catabolism of naphthalene (although Burkholderia does not degrade this compound any longer), and is now advancing towards the new substrate, DNT. We found that the action of the first enzyme of the biodegradation pathway, a Rieske-type dioxygenase, on the still-suboptimal substrate (DNT) generates a high level of endogenous reactive oxygen species. This, in turn, damages DNA and increases mutagenesis, ultimately resulting in the creation of novelty that may foster evolution of xenobiotic-degrading variants of the strain hosting the biodegradation pathway. The very metabolic problem thus somehow seems to stimulate the exploration of the solution space. Our data is fully consistent with the notion that stress caused by faulty dioxygenation of DNT accelerates the rate of bacterial evolution.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Hormesis defined.

          Hormesis is a term used by toxicologists to refer to a biphasic dose-response to an environmental agent characterized by a low dose stimulation or beneficial effect and a high dose inhibitory or toxic effect. In the fields of biology and medicine hormesis is defined as an adaptive response of cells and organisms to a moderate (usually intermittent) stress. Examples include ischemic preconditioning, exercise, dietary energy restriction and exposures to low doses of certain phytochemicals. Recent findings have elucidated the cellular signaling pathways and molecular mechanisms that mediate hormetic responses which typically involve enzymes such as kinases and deacetylases, and transcription factors such as Nrf-2 and NF-kappaB. As a result, cells increase their production of cytoprotective and restorative proteins including growth factors, phase 2 and antioxidant enzymes, and protein chaperones. A better understanding of hormesis mechanisms at the cellular and molecular levels is leading to and to novel approaches for the prevention and treatment of many different diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enzyme promiscuity: evolutionary and mechanistic aspects.

            The past few years have seen significant advances in research related to the 'latent skills' of enzymes - namely, their capacity to promiscuously catalyze reactions other than the ones they evolved for. These advances regard (i) the mechanism of catalytic promiscuity - how enzymes, that generally exert exquisite specificity, promiscuously catalyze other, and sometimes barely related, reactions; (ii) the evolvability of promiscuous functions - namely, how latent activities evolve further, and in particular, how promiscuous activities can firstly evolve without severely compromising the original activity. These findings have interesting implications on our understanding of how new enzymes evolve. They support the key role of catalytic promiscuity in the natural history of enzymes, and suggest that today's enzymes diverged from ancestral proteins catalyzing a whole range of activities at low levels, to create families and superfamilies of potent and highly specialized enzymes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Determining mutation rates in bacterial populations.

              When properly determined, spontaneous mutation rates are a more accurate and biologically meaningful reflection of underlying mutagenic mechanisms than are mutant frequencies. Because bacteria grow exponentially and mutations arise stochastically, methods to estimate mutation rates depend on theoretical models that describe the distribution of mutant numbers among parallel cultures, as in the original Luria-Delbr]uck fluctuation analysis. An accurate determination of mutation rate depends on understanding the strengths and limitations of these methods, and how to design fluctuation assays to optimize a given method. In this paper we describe a number of methods to estimate mutation rates, give brief accounts of their derivations, and discuss how they behave under various experimental conditions. Copyright 2000 Academic Press.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2013
                August 2013
                29 August 2013
                : 9
                : 8
                : e1003764
                Affiliations
                [1]Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Madrid, Spain
                Université Paris Descartes, France
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DPP PIN VdL. Performed the experiments: DPP PIN MC. Analyzed the data: DPP PIN VdL. Contributed reagents/materials/analysis tools: DPP PIN. Wrote the paper: DPP PIN VdL.

                [¤]

                Current address: Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.

                Article
                PGENETICS-D-13-00853
                10.1371/journal.pgen.1003764
                3757077
                24009532
                50992300-5bfe-42fb-94e6-974fbebd9892
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 March 2013
                : 16 July 2013
                Page count
                Pages: 11
                Funding
                This study was supported by the BIO and FEDER CONSOLIDER-INGENIO programme of the Spanish Ministry of Science and Innovation, the MICROME, ST-FLOW and ARISYS Contracts of the EU, the ERANET Program and the PROMT Project of the CAM. DPP is the holder of a Marie Curie Actions Program grant of the EC for visiting Scholars (PIIF-GA-2009-253825). PIN is a researcher from Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) and holds a Marie Curie Actions Program grant of the EC for visiting Scholars (ALLEGRO, UE-FP7-PEOPLE-2011-IIF-300508). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article