88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Generation of PI3P in the normally PI3P-deficient ER membrane makes the organelle a platform for autophagosome formation.

          Abstract

          Autophagy is a catabolic process that allows cells to digest their cytoplasmic constituents via autophagosome formation and lysosomal degradation. Recently, an autophagy-specific phosphatidylinositol 3-kinase (PI3-kinase) complex, consisting of hVps34, hVps15, Beclin-1, and Atg14L, has been identified in mammalian cells. Atg14L is specific to this autophagy complex and localizes to the endoplasmic reticulum (ER). Knockdown of Atg14L leads to the disappearance of the DFCP1-positive omegasome, which is a membranous structure closely associated with both the autophagosome and the ER. A point mutation in Atg14L resulting in defective ER localization was also defective in the induction of autophagy. The addition of the ER-targeting motif of DFCP1 to this mutant fully complemented the autophagic defect in Atg14L knockout embryonic stem cells. Thus, Atg14L recruits a subset of class III PI3-kinase to the ER, where otherwise phosphatidylinositol 3-phosphate (PI3P) is essentially absent. The Atg14L-dependent appearance of PI3P in the ER makes this organelle the platform for autophagosome formation.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum

          Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain–containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamics and diversity in autophagy mechanisms: lessons from yeast.

            Autophagy is a fundamental function of eukaryotic cells and is well conserved from yeast to humans. The most remarkable feature of autophagy is the synthesis of double membrane-bound compartments that sequester materials to be degraded in lytic compartments, a process that seems to be mechanistically distinct from conventional membrane traffic. The discovery of autophagy in yeast and the genetic tractability of this organism have allowed us to identify genes that are responsible for this process, which has led to the explosive growth of this research field seen today. Analyses of autophagy-related (Atg) proteins have unveiled dynamic and diverse aspects of mechanisms that underlie membrane formation during autophagy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation.

              Autophagy is a bulk degradation process in eukaryotic cells and has fundamental roles in cellular homeostasis.The origin and source of autophagosomal membranes are long-standing questions in the field. Using electron microscopy, we show that, in mammalian culture cells, the endoplasmic reticulum (ER) associates with early autophagic structures called isolation membranes (IMs). Overexpression of an Atg4B mutant, which causes defects in autophagosome formation, induces the accumulation of ER-IM complexes. Electron tomography revealed that the ER-IM complex appears as a subdomain of the ER that formed a cradle encircling the IM, and showed that both ER and isolation membranes are interconnected.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                23 August 2010
                : 190
                : 4
                : 511-521
                Affiliations
                [1 ]Department of Genetics, Graduate School of Medicine , [2 ]Department of Cellular Regulation and [3 ]Department of Host Defense, Research Institute for Microbial Diseases
                [4 ]Laboratory of Host Defense, World Premier International Immunology Frontier Research Center , and [5 ]Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan
                [6 ]Laboratory of Molecular Endocrinology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
                [7 ]Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, England, UK
                Author notes
                Correspondence to Takeshi Noda: takenoda@ 123456fbs.osaka-u.ac.jp ; or Tamotsu Yoshimori: tamyoshi@ 123456fbs.osaka-u.ac.jp
                Article
                200911141
                10.1083/jcb.200911141
                2928018
                20713597
                50a3f5d5-4c4f-4846-8f29-5d0e3de7163f
                © 2010 Matsunaga et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 27 November 2009
                : 25 July 2010
                Categories
                Research Articles
                Report

                Cell biology
                Cell biology

                Comments

                Comment on this article