16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      A Metabonomic and Proteomic Analysis of Changes in IMCD3 Cells Chronically Adapted to Hypertonicity

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The genomic response to adaptation of IMCD3 cells to hypertonicity results in both upregulation and downregulation of a variety of genes. Method: The present study was undertaken to assess the metabonomic and proteomic response of IMCD3 cells that have been chronically adapted to hypertonicity (600 and 900 mosm/kg H<sub>2</sub>O) as compared to cells under isotonic conditions. Results: Adaptation of IMCD3 cells to hypertonic conditions resulted in a change of a wide range of organic osmolytes, including sorbitol (+8,291%), betaine (+1,099%), myo-inositol (+669%), taurine (+113%) and glycerophosphorylcholine (+61%). Evaluation of the polyol pathway for sorbitol production revealed a reduction in sorbitol dehydrogenase and an increase in aldose reductase mRNA in adapted cells. Proteome analysis revealed increased expression of six glycolytic proteins, including malic enzyme and pyruvate carboxylase, indicating the activation of the pyruvate shunt and changes in glucose metabolism. This study showed that the observed reduction in cell replication could possibly reflect a redirection of cellular energy from cell growth and replication to maintenance of intracellular ion levels in chronically adapted cells. Conclusion: The combined metabonomic and proteomic analysis was shown to be a very helpful tool for the analysis of the effects caused by chronic adaptation to hypertonicity. It made it possible to better evaluate the importance of certain changes that occur in the process of adaptation.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Metabonomics: a platform for studying drug toxicity and gene function.

          The later that a molecule or molecular class is lost from the drug development pipeline, the higher the financial cost. Minimizing attrition is therefore one of the most important aims of a pharmaceutical discovery programme. Novel technologies that increase the probability of making the right choice early save resources, and promote safety, efficacy and profitability. Metabonomics is a systems approach for studying in vivo metabolic profiles, which promises to provide information on drug toxicity, disease processes and gene function at several stages in the discovery-and-development process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of advanced glycation end products in diabetic nephropathy.

            Nonenzymatic reactions between sugars and the free amino groups on proteins, lipids, and nucleic acids result in molecular dysfunction through the formation of advanced glycation end products (AGE). AGE have a wide range of chemical, cellular, and tissue effects through changes in charge, solubility, and conformation that characterize molecular senescence. AGE also interact with specific receptors and binding proteins to influence the expression of growth factors and cytokines, including TGF-beta1 and CTGF, thereby regulating the growth and proliferation of the various renal cell types. It seems that many of the pathogenic changes that occur in diabetic nephropathy may be induced by AGE. Drugs that either inhibit the formation of AGE or break AGE-induced cross-links have been shown to be renoprotective in experimental models of diabetic nephropathy. AGE are able to stimulate directly the production of extracellular matrix and inhibit its degradation. AGE modification of matrix proteins is also able to disrupt matrix-matrix and matrix-cell interactions, contributing to their profibrotic action. In addition, AGE significantly interact with the renin-angiotensin system. Recent studies have suggested that angiotensin-converting enzyme inhibitors are able to reduce the accumulation of AGE in diabetes, possibly via the inhibition of oxidative stress. This interaction may be a particularly important pathway for the development of AGE-induced damage, as it also can be attenuated by antioxidant therapy. In addition to being a consequence of oxidative stress, it is now clear that AGE can promote the generation of reactive oxygen species. It is likely that therapies that inhibit the formation of AGE will form an important part of future therapy in patients with diabetes, acting synergistically with conventional approaches to prevent diabetic renal injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis.

              Osmotic injury induced by rapid correction of severe chronic hyponatremia has been implicated in the development of central pontine myelinolysis. Organic osmolytes known previously as "idiogenic osmoles" accumulate intracellularly to protect cells from osmotic injury. We investigated the changes of these organic osmolytes as well as electrolytes in the brain during the induction and correction of chronic hyponatremia. Using 1H-nuclear magnetic resonance spectroscopy and HPLC, we found that in rats with chronic hyponatremia (3 d, serum sodium = 109 +/- 3 meq/liter), brain concentrations of myoinositol (41%), glycerophosphorylcholine (45%), phosphocreatine/creatine (60%), glutamate (53%), glutamine (45%), and taurine (37%) were all significantly decreased compared with control values (percentage control value shown, all P less than 0.01). The contribution of measured organic osmolytes and electrolytes to the total brain osmolality change was 23 and 72%, respectively. With rapid correction by 5% NaCl infusion, significant brain dehydration and elevation of brain Na and Cl levels above the normal range occurred at 24 h. These changes were not seen with slow correction by water deprivation. Reaccumulation of most organic osmolytes except glycerophosphorylcholine is delayed during the correction of hyponatremia and is independent of the correction rate of serum sodium. It is concluded that: most of the change of brain osmolality in chronic hyponatremia can be accounted by the changes in organic osmolytes and brain electrolytes; and rapid correction of hyponatremia is associated with an overshoot of brain sodium and chloride levels along with a low organic osmolyte level. The high cerebral ion concentrations in the absence of adequate concentrations of organic osmolytes may be relevant to the development of central pontine myelinolysis.
                Bookmark

                Author and article information

                Journal
                NEP
                Nephron Physiol
                10.1159/issn.1660-2137
                Nephron Physiology
                S. Karger AG
                1660-2137
                2008
                June 2008
                05 May 2008
                : 109
                : 1
                : p1-p10
                Affiliations
                aDepartment of Anesthesiology and bRenal Medicine, School of Medicine, University of Colorado Health Sciences Center, Denver, Colo., USA; cSalt and Water Research Center and Department of Anatomy, University of Aarhus, Aarhus, Denmark; dInstitute of Organic Chemistry, University of Bremen, Bremen, Germany
                Article
                129074 Nephron Physiol 2008;109:p1
                10.1159/000129074
                18460876
                50a8ee9e-5a0e-494c-97df-5bf261fe300b
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 02 August 2007
                : 17 February 2008
                Page count
                Figures: 9, Tables: 2, References: 28, Pages: 1
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                IMCD3 cells,Hypertonicity,Sorbitol,Polyol pathway,Proteomics,Metabonomics

                Comments

                Comment on this article