21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extensive ceRNA–ceRNA interaction networks mediated by miRNAs regulate development in multiple rhesus tissues

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Crosstalk between RNAs mediated by shared microRNAs (miRNAs) represents a novel layer of gene regulation, which plays important roles in development. In this study, we analyzed time series expression data for coding genes and long non-coding RNAs (lncRNAs) to identify thousands of interactions among competitive endogenous RNAs (ceRNAs) in four rhesus tissues. The ceRNAs exhibited dynamic expression and regulatory patterns during each tissue development process, which suggests that ceRNAs might work synergistically during different developmental stages or tissues to control specific functions. In addition, lncRNAs exhibit higher specificity as ceRNAs than coding-genes and their functions were predicted based on their competitive coding-gene partners to discover their important developmental roles. In addition to the specificity of tissue development, functional analyses demonstrated that the combined effects of multiple ceRNAs can have major impacts on general developmental and metabolic processes in multiple tissues, especially transcription-related functions where competitive interactions. Moreover, ceRNA interactions could sequentially and/or synergistically mediate the crosstalk among different signaling pathways during brain development. Analyzing ceRNA interactions during the development of multiple tissues will provideinsights in the regulation of normal development and the dysregulation of key mechanisms during pathogenesis.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs.

          Here, we demonstrate that protein-coding RNA transcripts can crosstalk by competing for common microRNAs, with microRNA response elements as the foundation of this interaction. We have termed such RNA transcripts as competing endogenous RNAs (ceRNAs). We tested this hypothesis in the context of PTEN, a key tumor suppressor whose abundance determines critical outcomes in tumorigenesis. By a combined computational and experimental approach, we identified and validated endogenous protein-coding transcripts that regulate PTEN, antagonize PI3K/AKT signaling, and possess growth- and tumor-suppressive properties. Notably, we also show that these genes display concordant expression patterns with PTEN and copy number loss in cancers. Our study presents a road map for the prediction and validation of ceRNA activity and networks and thus imparts a trans-regulatory function to protein-coding mRNAs. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal.

            The embryonic stem cell (ESC) transcriptional and epigenetic networks are controlled by a multilayer regulatory circuitry, including core transcription factors (TFs), posttranscriptional modifier microRNAs (miRNAs), and some other regulators. However, the role of large intergenic noncoding RNAs (lincRNAs) in this regulatory circuitry and their underlying mechanism remains undefined. Here, we demonstrate that a lincRNA, linc-RoR, may function as a key competing endogenous RNA to link the network of miRNAs and core TFs, e.g., Oct4, Sox2, and Nanog. We show that linc-RoR shares miRNA-response elements with these core TFs and that linc-RoR prevents these core TFs from miRNA-mediated suppression in self-renewing human ESC. We suggest that linc-RoR forms a feedback loop with core TFs and miRNAs to regulate ESC maintenance and differentiation. These results may provide insights into the functional interactions of the components of genetic networks during development and may lead to new therapies for many diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional organization of the transcriptome in human brain.

              The enormous complexity of the human brain ultimately derives from a finite set of molecular instructions encoded in the human genome. These instructions can be directly studied by exploring the organization of the brain's transcriptome through systematic analysis of gene coexpression relationships. We analyzed gene coexpression relationships in microarray data generated from specific human brain regions and identified modules of coexpressed genes that correspond to neurons, oligodendrocytes, astrocytes and microglia. These modules provide an initial description of the transcriptional programs that distinguish the major cell classes of the human brain and indicate that cell type-specific information can be obtained from whole brain tissue without isolating homogeneous populations of cells. Other modules corresponded to additional cell types, organelles, synaptic function, gender differences and the subventricular neurogenic niche. We found that subventricular zone astrocytes, which are thought to function as neural stem cells in adults, have a distinct gene expression pattern relative to protoplasmic astrocytes. Our findings provide a new foundation for neurogenetic inquiries by revealing a robust and previously unrecognized organization to the human brain transcriptome.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                02 November 2016
                30 June 2016
                30 June 2016
                : 44
                : 19
                : 9438-9451
                Affiliations
                [1 ]College of Bioinformatics Science and Technology, Harbin Medical University, 194 Xuefu Road, Harbin 150081, China
                [2 ]State Key Laboratory of Molecular Oncology, Department of Aetiology and Carcinogenesis, Cancer Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing 100021, China
                [3 ]BGI Tech Solutions Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
                [4 ]Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 10021, China
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +86 451 86615922; Fax: +86 451 86615922; Email: lixia@ 123456hrbmu.edu.cn
                Correspondence may also be addressed to Lianfeng Zhang. Email: zhanglf@ 123456cnilas.org
                Correspondence may also be addressed to Kaitai Zhang. Email: zhangkt@ 123456cicams.ac.cn
                Correspondence may also be addressed to Shujun Cheng. Email: chengshj@ 123456263.net.cn
                []These authors contributed to the paper as first authors.
                Article
                10.1093/nar/gkw587
                5100587
                27365046
                50bb002e-94f5-4929-9598-502366d0700f
                © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 19 June 2016
                : 17 June 2016
                : 29 October 2015
                Page count
                Pages: 14
                Categories
                RNA
                Custom metadata
                02 November 2016

                Genetics
                Genetics

                Comments

                Comment on this article