15
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eventos adversos autoinformados en los siete días posteriores a la vacunación con Spikevax® (Moderna) Translated title: Self-reported adverse events within the seven days following the Spikevax® (Moderna) vaccination

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen Objetivo: La monitorización continua de la seguridad de las vacunas COVID-19 puede aportar información adicional a los profesionales sanitarios y a la población general. El objetivo del presente estudio fue analizar los eventos adversos locales y sistémicos tras la administración de la vacuna Spikevax® (Moderna), e identificar los factores relacionados con una mayor reactogenicidad. Método: Mediante un cuestionario telefónico entrevistamos a 331 receptores de la vacuna Spikevax® (50,2% hombres; mediaedad = 46,4). Se preguntó acerca de las características de los participantes, infección previa por COVID-19 y eventos adversos locales y sistémicos en los siete días posteriores a la primera y segunda dosis de la vacuna. Resultados: El dolor en el lugar de inyección, la fatiga, y la cefalea fueron los eventos adversos más frecuentes. La prevalencia e intensidad de eventos locales fue mayor en la primera dosis, mientras que los sistémicos lo fueron en la segunda. La mayoría de los eventos adversos fueron leves/moderados; el 1,2% de los participantes necesitaron acudir a urgencias u hospitalización. Las mujeres y participantes de 18-55 años presentaron mayor probabilidad de experimentar mayor reactogenicidad, los participantes con infección previa por COVID-19 presentaron más eventos sistémicos tras la primera dosis y los participantes con enfer medades crónicas distintas de la hipertensión notificaron menos eventos adversos sistémicos tras la segunda dosis. Conclusiones: Nuestros resultados son consistentes con estudios previos, identificando a las mujeres, personas de 18-55 años y con infección previa por COVID-19 como los que mayor reactogenicidad a la vacuna experimentaron. También se encontró una relación entre la reactogenicidad y padecer alguna enfermedad cronica distinta de hipertensión.

          Translated abstract

          Abstract Objective: Continuous monitoring of COVID-19 vaccines safety may provide additional information to health care professionals and the general population. The aim of the present study was to analyze the local and systemic adverse events following the administration of the Spikevax® (Moderna) vaccine, and to identify the factors related to greater reactogenicity. Method: Using a telephone survey, we interviewed 331 recipient of the Spikevax® vaccine (50.2% men; Meanage = 46.4). Participants characteristics, prior COVID-19 infection and local and systemic adverse events within seven days following the first and second vaccine doses were asked. Results: Injection site pain, fatigue and headache were the most common adverse events. The prevalence and intensity of local events was higher after the first dose, while systemic events were higher in the second one. Most adverse events were mild/moderate; 1.2% of participants needed hospitalization or emergency room visit. Women and participants aged 18-55 years were more likely to experience greater reactogenicity, participants with prior COVID-19 infection had more systemic events after the first dose, and participants with chronic diseases other than hypertension reported fewer systemic adverse events following the second dose. Conclusions: Our results are consistent with previous studies, identifying women, people aged 18-55 years and those with previous COVID-19 infection as those who experienced the greatest reactogenicity to the vaccine. A relationship was also found between reactogenicity and suffering from a chronic disease other than hypertension.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          An interactive web-based dashboard to track COVID-19 in real time

          In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study

            Background The Pfizer-BioNTech (BNT162b2) and the Oxford-AstraZeneca (ChAdOx1 nCoV-19) COVID-19 vaccines have shown excellent safety and efficacy in phase 3 trials. We aimed to investigate the safety and effectiveness of these vaccines in a UK community setting. Methods In this prospective observational study, we examined the proportion and probability of self-reported systemic and local side-effects within 8 days of vaccination in individuals using the COVID Symptom Study app who received one or two doses of the BNT162b2 vaccine or one dose of the ChAdOx1 nCoV-19 vaccine. We also compared infection rates in a subset of vaccinated individuals subsequently tested for SARS-CoV-2 with PCR or lateral flow tests with infection rates in unvaccinated controls. All analyses were adjusted by age (≤55 years vs >55 years), sex, health-care worker status (binary variable), obesity (BMI <30 kg/m 2 vs ≥30 kg/m 2 ), and comorbidities (binary variable, with or without comorbidities). Findings Between Dec 8, and March 10, 2021, 627 383 individuals reported being vaccinated with 655 590 doses: 282 103 received one dose of BNT162b2, of whom 28 207 received a second dose, and 345 280 received one dose of ChAdOx1 nCoV-19. Systemic side-effects were reported by 13·5% (38 155 of 282 103) of individuals after the first dose of BNT162b2, by 22·0% (6216 of 28 207) after the second dose of BNT162b2, and by 33·7% (116 473 of 345 280) after the first dose of ChAdOx1 nCoV-19. Local side-effects were reported by 71·9% (150 023 of 208 767) of individuals after the first dose of BNT162b2, by 68·5% (9025 of 13 179) after the second dose of BNT162b2, and by 58·7% (104 282 of 177 655) after the first dose of ChAdOx1 nCoV-19. Systemic side-effects were more common (1·6 times after the first dose of ChAdOx1 nCoV-19 and 2·9 times after the first dose of BNT162b2) among individuals with previous SARS-CoV-2 infection than among those without known past infection. Local effects were similarly higher in individuals previously infected than in those without known past infection (1·4 times after the first dose of ChAdOx1 nCoV-19 and 1·2 times after the first dose of BNT162b2). 3106 of 103 622 vaccinated individuals and 50 340 of 464 356 unvaccinated controls tested positive for SARS-CoV-2 infection. Significant reductions in infection risk were seen starting at 12 days after the first dose, reaching 60% (95% CI 49–68) for ChAdOx1 nCoV-19 and 69% (66–72) for BNT162b2 at 21–44 days and 72% (63–79) for BNT162b2 after 45–59 days. Interpretation Systemic and local side-effects after BNT162b2 and ChAdOx1 nCoV-19 vaccination occur at frequencies lower than reported in phase 3 trials. Both vaccines decrease the risk of SARS-CoV-2 infection after 12 days. Funding ZOE Global, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, UK Medical Research Council, Wellcome Trust, UK Research and Innovation, American Gastroenterological Association.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Strategies for addressing vaccine hesitancy - A systematic review.

              The purpose of this systematic review is to identify, describe and assess the potential effectiveness of strategies to respond to issues of vaccine hesitancy that have been implemented and evaluated across diverse global contexts.
                Bookmark

                Author and article information

                Journal
                fh
                Farmacia Hospitalaria
                Farm Hosp.
                Grupo Aula Médica (Toledo, Toledo, Spain )
                1130-6343
                2171-8695
                October 2022
                : 46
                : 5
                : 301-307
                Affiliations
                [1] Huelva orgnameHospital Infanta Elena orgdiv1Servicio de Farmacia Hospitalaria España
                [2] Huelva orgnameFundación Andaluza Beturia para la Investigación en Salud España
                [3] Huelva orgnameUniversidad de Huelva orgdiv1Facultad de Educación, Psicología y Ciencias del Deporte orgdiv2Departamento de Psicología Social, Evolutiva y de la Educación España
                Article
                S1130-63432022000500005 S1130-6343(22)04600500005
                10.7399/fh.13245
                36183231
                50bd04d6-1451-4f57-a408-79a20d2317da

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 27 June 2022
                : 08 March 2022
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 25, Pages: 7
                Product

                SciELO Spain

                Categories
                Originales

                SARS-CoV-2,COVID-19 vaccines,Adverse events,Patient safety,Vacunas COVID-19,Efectos adversos,Seguridad del paciente

                Comments

                Comment on this article