76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      IMG/M: integrated genome and metagenome comparative data analysis system

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support for examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review (ER) companion system (IMG/M ER: https://img.jgi.doe.gov/mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          HMMER web server: 2015 update

          The HMMER website, available at http://www.ebi.ac.uk/Tools/hmmer/, provides access to the protein homology search algorithms found in the HMMER software suite. Since the first release of the website in 2011, the search repertoire has been expanded to include the iterative search algorithm, jackhmmer. The continued growth of the target sequence databases means that traditional tabular representations of significant sequence hits can be overwhelming to the user. Consequently, additional ways of presenting homology search results have been developed, allowing them to be summarised according to taxonomic distribution or domain architecture. The taxonomy and domain architecture representations can be used in combination to filter the results according to the needs of a user. Searches can also be restricted prior to submission using a new taxonomic filter, which not only ensures that the results are specific to the requested taxonomic group, but also improves search performance. The repertoire of profile hidden Markov model libraries, which are used for annotation of query sequences with protein families and domains, has been expanded to include the libraries from CATH-Gene3D, PIRSF, Superfamily and TIGRFAMs. Finally, we discuss the relocation of the HMMER webserver to the European Bioinformatics Institute and the potential impact that this will have.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            IMG 4 version of the integrated microbial genomes comparative analysis system

            The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein interaction maps for complete genomes based on gene fusion events.

              A large-scale effort to measure, detect and analyse protein-protein interactions using experimental methods is under way. These include biochemistry such as co-immunoprecipitation or crosslinking, molecular biology such as the two-hybrid system or phage display, and genetics such as unlinked noncomplementing mutant detection. Using the two-hybrid system, an international effort to analyse the complete yeast genome is in progress. Evidently, all these approaches are tedious, labour intensive and inaccurate. From a computational perspective, the question is how can we predict that two proteins interact from structure or sequence alone. Here we present a method that identifies gene-fusion events in complete genomes, solely based on sequence comparison. Because there must be selective pressure for certain genes to be fused over the course of evolution, we are able to predict functional associations of proteins. We show that 215 genes or proteins in the complete genomes of Escherichia coli, Haemophilus influenzae and Methanococcus jannaschii are involved in 64 unique fusion events. The approach is general, and can be applied even to genes of unknown function.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                04 January 2017
                13 October 2016
                13 October 2016
                : 45
                : Database issue , Database issue
                : D507-D516
                Affiliations
                [1 ]Biosciences Computing Group, Computational Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
                [2 ]Microbial Genome and Metagenome Program, Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 925 296 5697; Fax: +1 925 296 5666; Email: IMAChen@ 123456lbl.gov
                Correspondence may also be addressed to Nikos C. Kyrpides. Email: nckyrpides@ 123456lbl.gov
                Article
                10.1093/nar/gkw929
                5210632
                27738135
                50ce049b-8ac3-48c4-a3d8-fdcb1b49ef1f
                Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
                History
                : 05 October 2016
                : 16 September 2016
                Page count
                Pages: 10
                Categories
                Database Issue
                Custom metadata
                04 January 2017

                Genetics
                Genetics

                Comments

                Comment on this article