62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subfunctionalization of duplicated genes as a transition state to neofunctionalization

      research-article
      1 , 1 ,
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Gene duplication has been suggested to be an important process in the generation of evolutionary novelty. Neofunctionalization, as an adaptive process where one copy mutates into a function that was not present in the pre-duplication gene, is one mechanism that can lead to the retention of both copies. More recently, subfunctionalization, as a neutral process where the two copies partition the ancestral function, has been proposed as an alternative mechanism driving duplicate gene retention in organisms with small effective population sizes. The relative importance of these two processes is unclear.

          Results

          A set of lattice model genes that fold and bind to two peptide ligands with overlapping binding pockets, but not a third ligand present in the cell was designed. Each gene was duplicated in a model haploid species with a small constant population size and no recombination. One set of models allowed subfunctionalization of binding events following duplication, while another set did not allow subfunctionalization. Modeling under such conditions suggests that subfunctionalization plays an important role, but as a transition state to neofunctionalization rather than as a terminal fate of duplicated genes. There is no apparent selective pressure to maintain redundancy.

          Conclusion

          Subfunctionalization results in an increase in the preservation of duplicated gene copies, including those that are neofunctionalized, but never represents a substantial fraction of duplicate gene copies at any evolutionary time point and ultimately leads to neofunctionalization of those preserved copies. This conclusion also may reflect changes in gene function after duplication with time in real genomes.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          The origins of genome complexity.

          Complete genomic sequences from diverse phylogenetic lineages reveal notable increases in genome complexity from prokaryotes to multicellular eukaryotes. The changes include gradual increases in gene number, resulting from the retention of duplicate genes, and more abrupt increases in the abundance of spliceosomal introns and mobile genetic elements. We argue that many of these modifications emerged passively in response to the long-term population-size reductions that accompanied increases in organism size. According to this model, much of the restructuring of eukaryotic genomes was initiated by nonadaptive processes, and this in turn provided novel substrates for the secondary evolution of phenotypic complexity by natural selection. The enormous long-term effective population sizes of prokaryotes may impose a substantial barrier to the evolution of complex genomes and morphologies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Molecular Evolutionary Genetics

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation

                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central (London )
                1471-2148
                2005
                14 April 2005
                : 5
                : 28
                Affiliations
                [1 ]Computational Biology Unit, BCCS, University of Bergen, 5020 Bergen, Norway
                Article
                1471-2148-5-28
                10.1186/1471-2148-5-28
                1112588
                15831095
                50d2a9df-651b-4477-bc4d-4c2a9cfbe020
                Copyright © 2005 Rastogi and Liberles; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 January 2005
                : 14 April 2005
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article