36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperoside Induces Endogenous Antioxidant System to Alleviate Oxidative Stress

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Hyperoside, a flavonoid which is mainly found in Hypericum perforatum L., has many biological effects. One of the most important effects is to prevent the oxidative stress induced by reactive oxygen species. However, the molecular mechanisms underlying its effect are not fully understood. Oxidative stress is implicated in the occurrence of various physical diseases. A wide array of enzymatic antioxidant defense systems include NADH: quinone oxidoreductase 1, superoxide dismutase, and heme oxygenase-1 (HO-1). In the present study, the protective effects of hyperoside against hydrogen peroxide-induced oxidative stress in human lens epithelial cells, HLE-B3, were investigated in terms of HO-1 induction.

          Methods:

          The protein and mRNA expressions of HO-1 were examined by Western blotting and reverse transcriptase-PCR assays, respectively. To evaluate the ability of hyperoside to activate nuclear factor erythroid 2-related factor 2 (Nrf2), Western blotting and electrophoretic mobility shift assay were performed with nuclear extracts prepared from HLE-B3 cells treated with hyperoside. The activation of extracellular signal-regulated kinase (ERK), the upstream kinase of Nrf2 signaling, was monitored by Western blot analysis. The protective effect of hyperoside in HLE-B3 cells against hydrogen peroxide was performed by MTT assay.

          Results:

          Hyperoside increased both the mRNA and protein expression of HO-1 in a time- and dose-dependent manner. In addition, hyperoside elevated the level of of Nrf2 and its antioxidant response element-binding activity, which was modulated by upstream of ERK. Moreover, it activated ERK and restored cell viability which was decreased by hydrogen peroxide.

          Conclusions:

          Hyperoside is an effective compound to protect cells against oxidative stress via HO-1 induction.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer chemoprevention with dietary phytochemicals.

          Chemoprevention refers to the use of agents to inhibit, reverse or retard tumorigenesis. Numerous phytochemicals derived from edible plants have been reported to interfere with a specific stage of the carcinogenic process. Many mechanisms have been shown to account for the anticarcinogenic actions of dietary constituents, but attention has recently been focused on intracellular-signalling cascades as common molecular targets for various chemopreventive phytochemicals.
            • Record: found
            • Abstract: found
            • Article: not found

            Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro.

            A flavonoid-rich extract of Hypericum perforatum L. (FEHP) was prepared by adsorption on macroporous resin and desorption by ethanol. Total flavonoid content of FEHP was determined by a colorimetric method. The major constituents of FEHP, including rutin, hyperoside, isoquercitrin, avicularin, quercitrin, and quercetin, were determined by HPLC analysis and confirmed by LC-MS. Different antioxidant assays were utilized to evaluate free radical scavenging activity and antioxidant activity of FEHP. FEHP was an effective scavenger in quenching DPPH and superoxide radical with IC50 of 10.63 microg/mL and 54.3 microg/mL, respectively. A linear correlation between concentration of FEHP and reducing power was observed with a coefficient of r2 = 0.9991. Addition of 150 microg of FEHP obviously decreased the peroxidation of linoleic acid during 84 h incubation, but the amount of FEHP over 150 microg did not show statistically significant inhibitory effect of peroxidation of linoliec acid (p > 0.05). FEHP exhibited inhibitory effect of peroxidation of liposome induced both by hydroxyl radical generated with iron-ascorbic acid system and peroxyl radical and showed prominent inhibitory effect of deoxyribose degradation in a concentration-dependent manner in site-specific assay but poor effect in non-site-specific assay, which suggested that chelation of metal ion was the main antioxidant action. According to the results obtained in the present study, the antioxidant mechanism of FEHP might be attributed to its free radical scavenging activity, metal-chelation activity, and reactive oxygen quenching activity.
              • Record: found
              • Abstract: found
              • Article: not found

              Antioxidants and oxidants regulated signal transduction pathways.

              Many drugs and xenobiotics induce signal transduction events leading to gene expression of either pharmacologically beneficial effects, or unwanted side effects such as cytotoxicity which can compromise drug therapy. Using dietary chemopreventive compounds (isothiocyanates and green tea polyphenols), which are effective against various chemically-induced carcinogenesis models in animals studies, we studied the signal transduction events and gene expression profiles. These compounds have typically generated cellular "oxidative stress" and modulated gene expression including phase II detoxifying enzymes GST and QR as well as cellular defensive enzymes, heme oxygenase 1 (HO-1) and GST via the antioxidant/electrophile response element (ARE/EpRE). Members of the bZIP transcription factor, Nrf2 which heterodimerizes with Maf G/K, were found to bind to ARE, and transcriptionally activate ARE. Additionally the mitogen-activated protein kinases (MAPK; ERK, JNK and p38) were differentially activated by these compounds, and involved in the transcriptional activation of ARE-mediated reporter gene. Transfection studies with various cDNA encoding for wild-type of MAPK and Nrf2 showed synergistic response during co-transfection and to these agents. However, by increasing the concentrations of these xenobiotics, caspase activities and apoptosis were observed which were preceded by mitochondria damage and cytochrome c mitochondria release. Further, increased concentrations led to rapid cell necrosis. [corrected] Thus, we have proposed a model, that at low concentrations, these compounds activate MAPK pathway leading to activation of Nrf2 and ARE with subsequent induction of phase II and other defensive genes which protect cells against toxic insults thereby enhancing cell survival, a beneficial homeostatic response. At higher concentrations, these agents activate the caspase pathways, leading to apoptosis, a potential cytotoxic effect if it occurred in normal cells. The studies of these signaling pathways may yield important insights into the pharmacodynamic and toxicodynamic effects of drugs and xenobiotics during pharmaceutical drug discovery and development.

                Author and article information

                Journal
                J Cancer Prev
                J Cancer Prev
                JCP
                Journal of Cancer Prevention
                Korean Society of Cancer Prevention
                2288-3649
                2288-3657
                March 2016
                30 March 2016
                : 21
                : 1
                : 41-47
                Affiliations
                [1 ]Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
                [2 ]Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup, Korea University of Science and Technology, Daejeon, Korea
                [3 ]Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Korea University of Science and Technology, Daejeon, Korea
                [4 ]Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon, Korea
                Author notes
                Correspondence to: Jin Won Hyun, Department of Biochemistry, Jeju National University School of Medicine, 102 Jejudaehak-ro, Jeju 63243, Korea, Tel: +82-64-754-3838, Fax: +82-64-702-2687, E-mail: jinwonh@ 123456jejunu.ac.kr
                Article
                jcp-21-041
                10.15430/JCP.2016.21.1.41
                4819665
                27051648
                50d9514c-fcac-429e-a5be-9b97f6c2c8d0
                Copyright © 2016 Korean Society of Cancer Prevention

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 January 2016
                : 26 February 2016
                : 26 February 2016
                Categories
                Original Article

                hyperoside,heme oxygenase-1,oxidative stress,antioxidants

                Comments

                Comment on this article

                Related Documents Log