30
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeted and pH-facilitated theranostic of orthotopic gastric cancer via phase-transformation doxorubicin-encapsulated nanoparticles enhanced by low-intensity focused ultrasound (LIFU) with reduced side effect

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Focused ultrasound-mediated chemotherapy, as a non-invasive therapeutic modality, has been extensively explored in combating deep tumors for predominant penetration performance. However, the generally used high-intensity focused ultrasound (HIFU) inevitably jeopardizes normal tissue around the lesion for hyperthermal energy. To overcome this crucial issue, low-intensity focused ultrasound (LIFU) was introduced to fulfill precisely controlled imaging and therapy in lieu of HIFU. The objective of this study was to develop a facile and versatile nanoplatform (DPP-R) in response to LIFU and provide targeted drug delivery concurrently.

          Methods

          Multifunctional DPP-R was fabricated by double emulsion method and carbodiimide method. Physicochemical properties of DPP-R were detected respectively and the bio-compatibility and bio-safety were evaluated by CCK-8 assay, blood analysis, and histologic section. The targeted ability, imaging function, and anti-tumor effect were demonstrated in vitro and vivo.

          Results

          The synthetic DPP-R showed an average particle size at 367 nm, stable physical-chemical properties in different media, and high bio-compatibility and bio-safety. DPP-R was demonstrated to accumulate at the tumor site by active receptor/ligand reaction and passive EPR effect with intravenous administration. Stimulated by LIFU at the tumor site, phase-transformable PFH was vaporized in the core of the integration offering contrast-enhanced ultrasound imaging. The stimuli led to encapsulated DOX's initial burst release and subsequent sustained release for anti-tumor therapy which was verified to be more effective and have less adverse effects than free DOX.

          Conclusion

          DPP-R combined with LIFU provides a novel theranostic modality for GC treatment with potent therapeutic effect, including prominent performance of targeting, ultrasound imaging, and accurate drug release.

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Tumor Microenvironment-Responsive Ultrasmall Nanodrug Generators with Enhanced Tumor Delivery and Penetration

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound

            Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: Current status and future perspectives.

              Standard treatment options for patients with advanced gastric or gastroesophageal junction cancer (GC/GEJC) are associated with limited efficacy and some toxicity. Recently, immunotherapy with antibodies that inhibit the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) interaction has emerged as a new treatment option. This manuscript reviews early-phase and late-phase trials of immunotherapy in advanced GC/GEJC.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                IJN
                intjnano
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                18 September 2019
                2019
                : 14
                : 7627-7642
                Affiliations
                [1 ]Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010, People’s Republic of China
                [2 ]Institute of Ultrasound Imaging of Chongqing Medical University , Chongqing 400010, People’s Republic of China
                Author notes
                Correspondence: Yaxu Wang; Shiji Zhou Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University , Chongqing400010, People’s Republic of ChinaEmail wangyaxuhospital@163.com; zhoushiji@hospital.cqmu.edu.cn
                Author information
                http://orcid.org/0000-0002-7281-5845
                Article
                212888
                10.2147/IJN.S212888
                6757192
                31571868
                50dcfe3c-1fbd-4304-a20a-a96b5b6daef8
                © 2019 Liu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 19 April 2019
                : 06 August 2019
                Page count
                Figures: 11, References: 40, Pages: 16
                Categories
                Original Research

                Molecular medicine
                low-intensity focused ultrasound,nanoparticles,phase-transition,gastric cancer,targeted anti-cancer therapy

                Comments

                Comment on this article