5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Computerized activation sequence mapping of the human atrial septum.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To delineate the propagation of electrical activation in the atrial septum, atrial epicardial and atrial septal maps were recorded intraoperatively using a 156-channel computerized mapping system in 12 patients during sinus rhythm (n = 10), supraventricular tachycardia associated with septal pathways in Wolff-Parkinson-White syndrome (n = 3), atrioventricular (AV) node reentrant tachycardia (n = 4), and atrial flutter (n = 5). The epicardial and septal data were recorded simultaneously from 156 atrial electrodes, digitized, analyzed, and displayed as isochronous maps on a two-dimensional diagram of the atria. During sinus rhythm, the activation wave fronts propagated most rapidly along the large muscle bundles of the atrial septum. During supraventricular tachycardia associated with Wolff-Parkinson-White syndrome, the earliest site of retrograde atrial activation usually corresponded to the position of atrial insertion of the septal pathways. However, the earliest site of activation during orthodromic supraventricular tachycardia was different from that during ventricular pacing in 1 patient with a posterior septal accessory pathway localized by the epicardial mapping study. The data document the rationale for dividing the ventricular end of the accessory pathways (ie, the endocardial technique) rather than the atrial end (ie, the epicardial technique) in patients with Wolff-Parkinson-White syndrome. During AV node reentrant tachycardia, atrial activation data suggested that atrial tissue lying outside the confines of the anatomical AV node is a necessary link in this common arrhythmia. Thus, these atrial septal maps explain why surgical dissection, or properly positioned small cryolesions placed in the region of the AV node, can ablate AV node reentrant tachycardia without altering normal AV node function. The maps recorded during atrial flutter suggest the importance of the atrial septum as one limb of a macroreentrant circuit responsible for the arrhythmia, and imply that atrial flutter is amenable to control by surgical techniques. These studies demonstrate the details of normal atrial septal activation, the importance of the atrial septum in a variety of different atrial arrhythmias, and the basis of and potential for surgical ablation of the most common types of supraventricular arrhythmias.

          Related collections

          Author and article information

          Journal
          Ann Thorac Surg
          The Annals of thoracic surgery
          Elsevier BV
          0003-4975
          0003-4975
          Feb 1990
          : 49
          : 2
          Affiliations
          [1 ] Department of Surgery, Washington University School of Medicine, Barnes Hospital, St. Louis, Missouri.
          Article
          0003-4975(90)90144-U
          10.1016/0003-4975(90)90144-u
          2306145
          50e11415-3ca5-470e-a248-34ceeddda2c7
          History

          Comments

          Comment on this article