15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Direct evidence of amyloid precursor–like protein 1 trans interactions in cell–cell adhesion platforms investigated via fluorescence fluctuation spectroscopy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The amyloid precursor–like protein 1 (APLP1) plays a role in synaptic adhesion and synaptogenesis. In this work, we use quantitative fluorescence microscopy to demonstrate the existence of APLP1–APLP1 trans interaction across cell–cell junctions and propose a model explaining the molecular mechanism driving APLP1 multimerization.

          Abstract

          The amyloid precursor–like protein 1 (APLP1) is a type I transmembrane protein that plays a role in synaptic adhesion and synaptogenesis. Past investigations indicated that APLP1 is involved in the formation of protein–protein complexes that bridge the junctions between neighboring cells. Nevertheless, APLP1–APLP1 trans interactions have never been directly observed in higher eukaryotic cells. Here, we investigated APLP1 interactions and dynamics directly in living human embryonic kidney cells using fluorescence fluctuation spectroscopy techniques, namely cross-correlation scanning fluorescence correlation spectroscopy and number and brightness analysis. Our results show that APLP1 forms homotypic trans complexes at cell–cell contacts. In the presence of zinc ions, the protein forms macroscopic clusters, exhibiting an even higher degree of trans binding and strongly reduced dynamics. Further evidence from giant plasma membrane vesicles suggests that the presence of an intact cortical cytoskeleton is required for zinc-induced cis multimerization. Subsequently, large adhesion platforms bridging interacting cells are formed through APLP1–APLP1 trans interactions. Taken together, our results provide direct evidence that APLP1 functions as a neuronal zinc-dependent adhesion protein and allow a more detailed understanding of the molecular mechanisms driving the formation of APLP1 adhesion platforms.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Metadata matters: access to image data in the real world

          Data sharing is important in the biological sciences to prevent duplication of effort, to promote scientific integrity, and to facilitate and disseminate scientific discovery. Sharing requires centralized repositories, and submission to and utility of these resources require common data formats. This is particularly challenging for multidimensional microscopy image data, which are acquired from a variety of platforms with a myriad of proprietary file formats (PFFs). In this paper, we describe an open standard format that we have developed for microscopy image data. We call on the community to use open image data standards and to insist that all imaging platforms support these file formats. This will build the foundation for an open image data repository.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phospholipids undergo hop diffusion in compartmentalized cell membrane

            The diffusion rate of lipids in the cell membrane is reduced by a factor of 5–100 from that in artificial bilayers. This slowing mechanism has puzzled cell biologists for the last 25 yr. Here we address this issue by studying the movement of unsaturated phospholipids in rat kidney fibroblasts at the single molecule level at the temporal resolution of 25 μs. The cell membrane was found to be compartmentalized: phospholipids are confined within 230-nm-diameter (φ) compartments for 11 ms on average before hopping to adjacent compartments. These 230-nm compartments exist within greater 750-nm-φ compartments where these phospholipids are confined for 0.33 s on average. The diffusion rate within 230-nm compartments is 5.4 μm2/s, which is nearly as fast as that in large unilamellar vesicles, indicating that the diffusion in the cell membrane is reduced not because diffusion per se is slow, but because the cell membrane is compartmentalized with regard to lateral diffusion of phospholipids. Such compartmentalization depends on the actin-based membrane skeleton, but not on the extracellular matrix, extracellular domains of membrane proteins, or cholesterol-enriched rafts. We propose that various transmembrane proteins anchored to the actin-based membrane skeleton meshwork act as rows of pickets that temporarily confine phospholipids.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elucidating membrane structure and protein behavior using giant plasma membrane vesicles.

              The observation of phase separation in intact plasma membranes isolated from live cells is a breakthrough for research into eukaryotic membrane lateral heterogeneity, specifically in the context of membrane rafts. These observations are made in giant plasma membrane vesicles (GPMVs), which can be isolated by chemical vesiculants from a variety of cell types and microscopically observed using basic reagents and equipment available in any cell biology laboratory. Microscopic phase separation is detectable by fluorescent labeling, followed by cooling of the membranes below their miscibility phase transition temperature. This protocol describes the methods to prepare and isolate the vesicles, equipment to observe them under temperature-controlled conditions and three examples of fluorescence analysis: (i) fluorescence spectroscopy with an environment-sensitive dye (laurdan); (ii) two-photon microscopy of the same dye; and (iii) quantitative confocal microscopy to determine component partitioning between raft and nonraft phases. GPMV preparation and isolation, including fluorescent labeling and observation, can be accomplished within 4 h.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 December 2017
                : 28
                : 25
                : 3609-3620
                Affiliations
                [1] aInstitute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
                [2] bInstitute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
                [3] cDepartment of Pharmacology and Therapeutics/Integrated Program in Neuroscience, McGill University, Montreal, QC H3G 1Y63, Canada
                University of California, San Diego
                Author notes

                Present address: Miltenyi Biotec GmbH, Robert-Koch-Straße 1, 17166 Teterow, Germany.

                *Address correspondence to: Salvatore Chiantia ( chiantia@ 123456gmail.com ).
                Article
                E17-07-0459
                10.1091/mbc.E17-07-0459
                5706989
                29021345
                50e2125e-a13d-4e52-ba36-aebfcd597872
                © 2017 Dunsing et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                History
                : 17 July 2017
                : 13 September 2017
                : 04 October 2017
                Categories
                Articles
                Cell Interactions

                Molecular biology
                Molecular biology

                Comments

                Comment on this article