22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Mosquito Repellent Activity of the Active Component of Air Freshener Gel from Java Citronella Oil ( Cymbopogon winterianus)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study examines the active component of Cymbopogon winterianus (Java citronella) oil, as a green mosquito repellent, obtained through a steam distillation method. Java citronella oil, which contains citronellol, citronellal, and geraniol, was isolated by batch vacuum fractional distillation, and their effect was tested against the dengue fever (DF) vector, known as Aedes aegypti. Furthermore, air freshener gels were formulated with Java citronella oil, carrageenan, gum, sodium benzoate, ethylene glycol, polysorbate 20, sodium chloride, and distilled water, at varying concentrations. The results show that formula I has the best controlled release evaporation for citronellal, citronellol, and geraniol, as well as the best storage time of 16.82 days and 12.77 days for geraniol and citronellol, respectively. The most significant specific gravity (0.0136) was recorded in formula V, while gel formula I exhibited the highest level of instability at 35°C, with a syneresis value of 77.11% in t = 72 h and pH 5.33. In addition, formula IV at 5°C demonstrated the highest syneresis (75.34%) in t = 72 h, with pH 7.04, while a peak viscosity of 100,958 cP was recorded in formula IV. The repellent activity of each active component was measured based on the period of protection conferred against the bites of Aedes aegypti within one hour, and the results showed geraniol and citronellol, with respective activity of 78.00% ± 4.83 and 77.34% ± 3.57, as the most effective.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Carrageenan: a review

          Carrageenan is a natural carbohydrate (polysaccharide) obtained from edible red seaweeds. The name Carrageenan is derived from the Chondrus crispus species of seaweed known as Carrageen Moss or Irish Moss in England, and Carraigin in Ireland. Carraigin has been used in Ireland since 400 AD as a gelatin and as a home remedy to cure coughs and colds. It grows along the coasts of North America and Europe. Carrageenans are used in a variety of commercial applications as gelling, thickening, and stabilising agents, especially in food products and sauces. Aside from these functions, carrageenans are used in experimental medicine, pharmaceutical formulations, cosmetics, and industrial applications.  
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative efficacy of insect repellents against mosquito bites.

            The worldwide threat of arthropod-transmitted diseases, with their associated morbidity and mortality, underscores the need for effective insect repellents. Multiple chemical, botanical, and "alternative" repellent products are marketed to consumers. We sought to determine which products available in the United States provide reliable and prolonged complete protection from mosquito bites. We conducted studies involving 15 volunteers to test the relative efficacy of seven botanical insect repellents; four products containing N,N-diethyl-m-toluamide, now called N,N-diethyl-3-methylbenzamide (DEET); a repellent containing IR3535 (ethyl butylacetylaminopropionate); three repellent-impregnated wristbands; and a moisturizer that is commonly claimed to have repellent effects. These products were tested in a controlled laboratory environment in which the species of the mosquitoes, their age, their degree of hunger, the humidity, the temperature, and the light-dark cycle were all kept constant. DEET-based products provided complete protection for the longest duration. Higher concentrations of DEET provided longer-lasting protection. A formulation containing 23.8 percent DEET had a mean complete-protection time of 301.5 minutes. A soybean-oil-based repellent protected against mosquito bites for an average of 94.6 minutes. The IR3535-based repellent protected for an average of 22.9 minutes. All other botanical repellents we tested provided protection for a mean duration of less than 20 minutes. Repellent-impregnated wristbands offered no protection. Currently available non-DEET repellents do not provide protection for durations similar to those of DEET-based repellents and cannot be relied on to provide prolonged protection in environments where mosquito-borne diseases are a substantial threat.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plant-based insect repellents: a review of their efficacy, development and testing

              Plant-based repellents have been used for generations in traditional practice as a personal protection measure against host-seeking mosquitoes. Knowledge on traditional repellent plants obtained through ethnobotanical studies is a valuable resource for the development of new natural products. Recently, commercial repellent products containing plant-based ingredients have gained increasing popularity among consumers, as these are commonly perceived as “safe” in comparison to long-established synthetic repellents although this is sometimes a misconception. To date insufficient studies have followed standard WHO Pesticide Evaluation Scheme guidelines for repellent testing. There is a need for further standardized studies in order to better evaluate repellent compounds and develop new products that offer high repellency as well as good consumer safety. This paper presents a summary of recent information on testing, efficacy and safety of plant-based repellents as well as promising new developments in the field.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Parasitol Res
                J Parasitol Res
                JPR
                Journal of Parasitology Research
                Hindawi
                2090-0023
                2090-0031
                2020
                29 January 2020
                : 2020
                : 9053741
                Affiliations
                1Essential Oil Study Center, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, 50229 Central Java, Indonesia
                2Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, 50229 Central Java, Indonesia
                Author notes

                Academic Editor: José F. Silveira

                Author information
                https://orcid.org/0000-0002-4157-6060
                Article
                10.1155/2020/9053741
                7204120
                50f54bce-cfbc-487b-926c-425bca02ffd8
                Copyright © 2020 Willy Tirza Eden et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 October 2019
                : 13 December 2019
                : 16 January 2020
                Funding
                Funded by: Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia
                Award ID: DIPA 042.01.2.400899/2019
                Categories
                Research Article

                Parasitology
                Parasitology

                Comments

                Comment on this article