0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oral LPS Dosing Induces Local Immunological Changes in the Pancreatic Lymph Nodes in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lacking the initial contact between the immune system and microbial-associated molecular patterns (MAMPs), such as lipopolysaccharides (LPS), early in life, may be regarded as one of the causal factors of the increasing global increase in the incidence of autoimmune diseases, such as type 1 diabetes (T1D). Previously, a reduced incidence of T1D accompanied by dramatically increased abundances of both the mucin-metabolising bacterium Akkermansia muciniphila, and LPS-carrying Proteobacteria was observed, when vancomycin was given to pups of nonobese diabetic (NOD) mice. While the T1D incidence reducing effect of A. muciniphila has been shown in further studies, little is known as to whether the increased abundance of LPS-carrying bacteria also has a protective effect. Therefore, we fed NOD pups with Eschericia coli LPS orally from birth to weaning, which decreased the gene expressions of TNFα, IL-10, IL-6, IFNγ, IL-1β, IL-2, IL-4, and FoxP3 in the pancreatic lymph nodes, while the same gene expression profile in the spleen was unaffected. However, no significant difference in the incidence of T1D, gut microbiota composition, or ileum expression of the genetic markers of gut permeability, Claudin8, Occludin, Zonulin- 1 (Tjp1), Claudin15, Muc1, and Muc2 were observed in relation to LPS ingestion. It is, therefore, concluded that early life oral E. coli LPS has an impact on the local immune response, which, however, did not influence T1D incidence in NOD mice later in life.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Commensal bacteria protect against food allergen sensitization.

          Environmentally induced alterations in the commensal microbiota have been implicated in the increasing prevalence of food allergy. We show here that sensitization to a food allergen is increased in mice that have been treated with antibiotics or are devoid of a commensal microbiota. By selectively colonizing gnotobiotic mice, we demonstrate that the allergy-protective capacity is conferred by a Clostridia-containing microbiota. Microarray analysis of intestinal epithelial cells from gnotobiotic mice revealed a previously unidentified mechanism by which Clostridia regulate innate lymphoid cell function and intestinal epithelial permeability to protect against allergen sensitization. Our findings will inform the development of novel approaches to prevent or treat food allergy based on modulating the composition of the intestinal microbiota.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract.

            A 16S rRNA-targeted probe, MUC-1437, was designed and validated in order to determine the presence and numbers of cells of Akkermansia muciniphila, a mucin degrader, in the human intestinal tract. As determined by fluorescent in situ hybridization, A. muciniphila accounted more than 1% of the total fecal cells and was shown to be a common bacterial component of the human intestinal tract.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse.

              Increasing evidence suggests that environmental factors changing the normal colonisation pattern in the gut strongly influence the risk of developing autoimmune diabetes. The aim of this study was to investigate, both during infancy and adulthood, whether treatment with vancomycin, a glycopeptide antibiotic specifically directed against Gram-positive bacteria, could influence immune homeostasis and the development of diabetic symptoms in the NOD mouse model for diabetes. Accordingly, one group of mice received vancomycin from birth until weaning (day 28), while another group received vancomycin from 8 weeks of age until onset of diabetes. Pyrosequencing of the gut microbiota and flow cytometry of intestinal immune cells was used to investigate the effect of vancomycin treatment. At the end of the study, the cumulative diabetes incidence was found to be significantly lower for the neonatally treated group compared with the untreated group, whereas the insulitis score and blood glucose levels were significantly lower for the mice treated as adults compared with the other groups. Mucosal inflammation was investigated by intracellular cytokine staining of the small intestinal lymphocytes, which displayed an increase in cluster of differentiation (CD)4(+) T cells producing pro-inflammatory cytokines in the neonatally treated mice. Furthermore, bacteriological examination of the gut microbiota composition by pyrosequencing revealed that vancomycin depleted many major genera of Gram-positive and Gram-negative microbes while, interestingly, one single species, Akkermansia muciniphila, became dominant. The early postnatal period is a critical time for microbial protection from type 1 diabetes and it is suggested that the mucolytic bacterium A. muciniphila plays a protective role in autoimmune diabetes development, particularly during infancy.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi
                2314-6745
                2314-6753
                2019
                6 March 2019
                : 2019
                : 1649279
                Affiliations
                1Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
                2Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
                3Department of Environmental Sciences, University of Århus, Frederiksborgvej 399, 4000 Roskilde, Denmark
                4Bartholin Institute, Rigshospitalet, Ole Måløesvej 5, 2200 Copenhagen N, Denmark
                Author notes

                Academic Editor: Abdelaziz Amrani

                Author information
                http://orcid.org/0000-0002-0126-7423
                http://orcid.org/0000-0001-8121-1114
                http://orcid.org/0000-0003-1575-2507
                Article
                10.1155/2019/1649279
                6431374
                30956991
                510282de-9761-4ff8-9c19-51ad2b95a489
                Copyright © 2019 Pernille Kihl et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 November 2018
                : 17 January 2019
                Funding
                Funded by: Novo Nordisk
                Funded by: University of Copenhagen
                Categories
                Research Article

                Comments

                Comment on this article