11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inner-Scene Similarities as a Contextual Cue for Object Detection

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using image context is an effective approach for improving object detection. Previously proposed methods used contextual cues that rely on semantic or spatial information. In this work, we explore a different kind of contextual information: inner-scene similarity. We present the CISS (Context by Inner Scene Similarity) algorithm, which is based on the observation that two visually similar sub-image patches are likely to share semantic identities, especially when both appear in the same image. CISS uses base-scores provided by a base detector and performs as a post-detection stage. For each candidate sub-image (denoted anchor), the CISS algorithm finds a few similar sub-images (denoted supporters), and, using them, calculates a new enhanced score for the anchor. This is done by utilizing the base-scores of the supporters and a pre-trained dependency model. The new scores are modeled as a linear function of the base scores of the anchor and the supporters and is estimated using a minimum mean square error optimization. This approach results in: (a) improved detection of partly occluded objects (when there are similar non-occluded objects in the scene), and (b) fewer false alarms (when the base detector mistakenly classifies a background patch as an object). This work relates to Duncan and Humphreys' "similarity theory," a psychophysical study. which suggested that the human visual system perceptually groups similar image regions and that the classification of one region is affected by the estimated identity of the other. Experimental results demonstrate the enhancement of a base detector's scores on the PASCAL VOC dataset.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          Visual search and stimulus similarity.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Building the gist of a scene: the role of global image features in recognition.

            Humans can recognize the gist of a novel image in a single glance, independent of its complexity. How is this remarkable feat accomplished? On the basis of behavioral and computational evidence, this paper describes a formal approach to the representation and the mechanism of scene gist understanding, based on scene-centered, rather than object-centered primitives. We show that the structure of a scene image can be estimated by the mean of global image features, providing a statistical summary of the spatial layout properties (Spatial Envelope representation) of the scene. Global features are based on configurations of spatial scales and are estimated without invoking segmentation or grouping operations. The scene-centered approach is not an alternative to local image analysis but would serve as a feed-forward and parallel pathway of visual processing, able to quickly constrain local feature analysis and enhance object recognition in cluttered natural scenes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Super-resolution from a single image

                Bookmark

                Author and article information

                Journal
                2017-07-14
                Article
                1707.04406
                51088351-1688-4bad-ab03-228a97ac5854

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article