7
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knockdown of hsa_circ_0059955 Induces Apoptosis and Cell Cycle Arrest in Nucleus Pulposus Cells via Inhibiting Itchy E3 Ubiquitin Protein Ligase

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Circular RNAs (circRNAs) play an important role in the progression of intervertebral disc (IVD) degeneration (IVDD). Using bioinformatics analysis, we have found that the expression of circRNA hsa_circ_0059955 was significantly downregulated in IVDD tissues. However, the relevant mechanism of hsa_circ_0059955 in the progression of IVDD remains unclear.

          Methods

          CCK-8 and flow cytometry assays were used to evaluate cell proliferation and apoptosis. In addition, Western blot assay was used to detect the expressions of ITCH, p73, CDK2 in nucleus pulposus (NP) cells. Moreover, a puncture-induced IVDD rat model was established to explore the role of hsa_circ_0059955 in IVDD.

          Results

          The level of hsa_circ_0059955 was significantly decreased in IVDD tissues from IVDD patients. Itchy E3 ubiquitin protein ligase (ITCH) is the host gene of hsa_circ_0059955, and downregulation of hsa_circ_0059955 significantly decreased the expression of ITCH in NP cells. In addition, downregulation of hsa_circ_0059955 markedly inhibited proliferation and induced apoptosis and cell cycle arrest in NP cells. Moreover, in vivo study illustrated that overexpression of hsa_circ_0059955 ameliorated IVDD in rats.

          Conclusion

          Downregulation of hsa_circ_0059955 could induce apoptosis and cell cycle arrest in NP cells in vitro, while overexpression of hsa_circ_0059955 attenuated the IVDD in a puncture-induced rat model in vivo. Therefore, hsa_circ_0059955 might serve as a therapeutic target for the treatment of IVDD.

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanics and biology in intervertebral disc degeneration: a vicious circle.

          Intervertebral disc degeneration is a major cause of low back pain. Despite its long history and large socio-economical impact in western societies, the initiation and progress of disc degeneration is not well understood and a generic disease model is lacking. In literature, mechanics and biology have both been implicated as the predominant inductive cause; here we argue that they are interconnected and amplify each other. This view is supported by the growing awareness that cellular physiology is strongly affected by mechanical loading. We propose a vicious circle of mechanical overloading, catabolic cell response, and degeneration of the water-binding extracellular matrix. Rather than simplifying the disease, the model illustrates the complexity of disc degeneration, because all factors are interrelated. It may however solve some of the controversy in the field, because the vicious circle can be entered at any point, eventually leading to the same pathology. The proposed disease model explains the comparable efficacy of very different animal models of disc degeneration, but also helps to consider the consequences of therapeutic interventions, either at the cellular, material or mechanical level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein

            Objectives Circular RNAs (circRNAs) have been proven to function as competing endogenous RNAs to interact with microRNAs (miRNAs) and influence the expression of miRNA target mRNAs. In this study, we investigated whether circRNAs could act as competing endogenous RNAs to regulate the pathological process of intervertebral disc degeneration (IVDD). Methods The role and mechanism of a circRNA, circVMA21, in IVDD were explored in nucleus pulposus (NP) cells and degenerative NP tissues from patients and rat models. The interaction between circVMA21 and miR-200c as well as the target mRNA, X linked inhibitor-of-apoptosis protein (XIAP), was examined. Results The decreased expression of XIAP in the inflammatory cytokines-treated NP cells and the degenerative NP tissues was directly associated with excessive apoptosis and imbalance between anabolic and catabolic factors of extracellular matrix. miR-200c regulated NP cell viability and functions through inhibiting XIAP. circVMA21 acted as a sponge of miR-200c and functioned in NP cells through targeting miR-200c and XIAP. Intradiscal injection of circVMA21 alleviated IVDD in the rat model. Conclusions CircVMA21 could alleviate inflammatory cytokines-induced NP cell apoptosis and imbalance between anabolism and catabolism of extracellular matrix through miR-200c-XIAP pathway. It provides a potentially effective therapeutic strategy for IVDD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo

              Intervertebral disc degeneration (IDD) is a complicated process that involves both cellular apoptosis and senescence. Metformin has been reported to stimulate autophagy, whereas autophagy is shown to protect against apoptosis and senescence. Therefore, we hypothesize that metformin may have therapeutic effect on IDD through autophagy stimulation. The effect of metformin on IDD was investigated both in vitro and in vivo. Our study showed that metformin attenuated cellular apoptosis and senescence induced by tert-butyl hydroperoxide in nucleus pulposus cells. Autophagy, as well as its upstream regulator AMPK, was activated by metformin in nucleus pulposus cells in a dose- and time-dependent manner. Inhibition of autophagy by 3-MA partially abolished the protective effect of metformin against nucleus pulposus cells' apoptosis and senescence, indicating that autophagy was involved in the protective effect of metformin on IDD. In addition, metformin was shown to promote the expression of anabolic genes such as Col2a1 and Acan expression while inhibiting the expression of catabolic genes such as Mmp3 and Adamts5 in nucleus pulposus cells. In vivo study illustrated that metformin treatment could ameliorate IDD in a puncture-induced rat model. Thus, our study showed that metformin could protect nucleus pulposus cells against apoptosis and senescence via autophagy stimulation and ameliorate disc degeneration in vivo, revealing its potential to be a therapeutic agent for IDD.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                25 September 2020
                2020
                : 14
                : 3951-3963
                Affiliations
                [1 ]Department of Orthopedics, China-Japan Union Hospital , Changchun, Jilin 130031, People’s Republic of China
                Author notes
                Correspondence: Ruofeng Yin Department of Orthopedics, China-Japan Union Hospital , Changchun, Jilin130031, People’s Republic of China Email yrf_wind@jlu.edu.cn
                Article
                253293
                10.2147/DDDT.S253293
                7526870
                33061300
                510998f8-f6ed-4354-a90c-238c5d08e26e
                © 2020 Kong et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 10 March 2020
                : 21 July 2020
                Page count
                Figures: 7, References: 44, Pages: 13
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                intervertebral disc degeneration,hsa_circ_0059955,itchy e3 ubiquitin protein ligase,p73

                Comments

                Comment on this article