80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Syndecan-1 Regulates Vascular Smooth Muscle Cell Phenotype

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          We examined the role of syndecan-1 in modulating the phenotype of vascular smooth muscle cells in the context of endogenous inflammatory factors and altered microenvironments that occur in disease or injury-induced vascular remodeling.

          Methods and Results

          Vascular smooth muscle cells (vSMCs) display a continuum of phenotypes that can be altered during vascular remodeling. While the syndecans have emerged as powerful and complex regulators of cell function, their role in controlling vSMC phenotype is unknown. Here, we isolated vSMCs from wild type (WT) and syndecan-1 knockout (S1KO) mice. Gene expression and western blotting studies indicated decreased levels of α-smooth muscle actin (α-SMA), calponin, and other vSMC-specific differentiation markers in S1KO relative to WT cells. The spread area of the S1KO cells was found to be greater than WT cells, with a corresponding increase in focal adhesion formation, Src phosphorylation, and alterations in actin cytoskeletal arrangement. In addition, S1KO led to increased S6RP phosphorylation and decreased AKT and PKC-α phosphorylation. To examine whether these changes were present in vivo, isolated aortae from aged WT and S1KO mice were stained for calponin. Consistent with our in-vitro findings, the WT mice aortae stained higher for calponin relative to S1KO. When exposed to the inflammatory cytokine TNF-α, WT vSMCs had an 80% reduction in syndecan-1 expression. Further, with TNF-α, S1KO vSMCs produced increased pro-inflammatory cytokines relative to WT. Finally, inhibition of interactions between syndecan-1 and integrins αvβ3 and αvβ5 using the inhibitory peptide synstatin appeared to have similar effects on vSMCs as knocking out syndecan-1, with decreased expression of vSMC differentiation markers and increased expression of inflammatory cytokines, receptors, and osteopontin.

          Conclusions

          Taken together, our results support that syndecan-1 promotes vSMC differentiation and quiescence. Thus, the presence of syndecan-1 would have a protective effect against vSMC dedifferentiation and this activity is linked to interactions with integrins αvβ3 and αvβ5.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Syndecans: new kids on the signaling block.

          Cell-associated proteoglycans provide highly complex and sophisticated systems to control interactions of extracellular cell matrix components and soluble ligands with the cell surface. Syndecans, a conserved family of heparan- and chondroitin-sulfate carrying transmembrane proteins, are emerging as central players in these interactions. Recent studies have demonstrated the essential role of syndecans in modulating cellular signaling in embryonic development, tumorigenesis, and angiogenesis. In this review, we focus on new advances in our understanding of syndecan-mediated cell signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Newest findings on the oldest oncogene; how activated src does it.

            F M Frame (2004)
            Oncogenic forms of the non-receptor tyrosine kinase Src alter cell structure, in particular the actin cytoskeleton and the adhesion networks that control cell migration, and also transmit signals that regulate proliferation and cell survival. Recent work indicates that they do so by influencing the RhoA-ROCK pathway that controls contractile actin filament assembly, the STAT family of transcription factors needed for transformation, and the Cbl ubiquitin ligase that controls Src protein levels. These studies also shed light on the role of focal adhesion kinase (FAK) downstream of v-Src and other signalling pathways in controlling migration, invasion and survival of transformed cells. Src directly phosphorylates integrins and can also modulate R-Ras activity. Moreover, it stimulates the E-cadherin regulator Hakai, interacts with and phosphorylates the novel podosome-linked adaptor protein Fish, and progressively phosphorylates the gap junction component connexion 43. A recurring theme is the identification of novel and important Src substrates that mediate key biological events associated with transformation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species signaling in vascular smooth muscle cells.

              Reactive oxygen species (ROS) have been shown to function as important signaling molecules in the cardiovascular system. Vascular smooth muscle cells (VSMCs) contain several sources of ROS, among which the NADPH oxidases are predominant. In VSMCs, ROS mediate many pathophysiological processes, such as growth, migration, apoptosis and secretion of inflammatory cytokines, as well as physiological processes, such as differentiation, by direct and indirect effects at multiple signaling levels. Therefore, it becomes critical to understand the different roles ROS play in the physiology and pathophysiology of VSMCs.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                25 February 2014
                : 9
                : 2
                : e89824
                Affiliations
                [1]Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
                Texas A & M, Division of Cardiology, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SC AB. Performed the experiments: SC CL DH DP. Analyzed the data: SC DH AB. Contributed reagents/materials/analysis tools: AB. Wrote the paper: SC AB.

                Article
                PONE-D-13-37000
                10.1371/journal.pone.0089824
                3934950
                24587062
                5113b730-2ed2-4122-b464-aaa16d6c180d
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 September 2013
                : 24 January 2014
                Page count
                Pages: 12
                Funding
                This study was supported by the American Heart Association (10SDG2630139) and the National Institutes of Health (1DP2OD008716-01). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Glycobiology
                Proteoglycans
                Proteins
                Extracellular matrix proteins
                Molecular cell biology
                Cell adhesion
                Integrins
                Signal transduction
                Signaling in cellular processes
                Extracellular matrix signaling
                Cellular stress responses
                Extracellular matrix
                Gene expression
                Engineering
                Bioengineering
                Biomedical engineering
                Materials science
                Biomaterials
                Medicine
                Cardiovascular
                Vascular biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article