2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A high-density nanowire electrode on paper for biomedical applications

      ,
      RSC Advances
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Different types of nanowires made from platinum, nickel and copper are fabricated and patterned with microscale resolution on paper substrates and employed for biomedical applications.

          Paper-based devices have heralded a new direction for low-cost, point-of-care medical diagnostics. In this paper, we bring the benefits of nanotechnology to paper-based diagnostics by presenting a room temperature, low-cost process to fabricate high-density nanowires directly on paper substrates using template-assisted electrodeposition and simple adhesive tape-based patterning. Different types of nanowires made from platinum, nickel and copper are fabricated and patterned with microscale resolution on paper substrates. Nanowires are characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and impedance spectroscopy. The approach was used to make dry paper-based nanowire electrodes that exhibit excellent electrode-tissue impedance suitable for recording electrocardiogram signals without any wet-gel adhesives. Another application employed a nanowire electrode on paper as a cathode in batteries for energy harvesting from natural acidic sources. The battery generated sufficient power of around 6 mW with dimensions of just 4 cm 2 from a simulated gastric acid environment. Many more applications ranging from high surface area electrodes for supercapacitors and batteries to next generation chemical and biological sensors will be enabled by the proposed approach of bringing nanotechnology to paper-based devices.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnostics for the developing world: microfluidic paper-based analytical devices.

          Microfluidic paper-based analytical devices (microPADs) are a new class of point-of-care diagnostic devices that are inexpensive, easy to use, and designed specifically for use in developing countries. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in paper-based point-of-care diagnostics.

            Advanced diagnostic technologies, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), have been widely used in well-equipped laboratories. However, they are not affordable or accessible in resource-limited settings due to the lack of basic infrastructure and/or trained operators. Paper-based diagnostic technologies are affordable, user-friendly, rapid, robust, and scalable for manufacturing, thus holding great potential to deliver point-of-care (POC) diagnostics to resource-limited settings. In this review, we present the working principles and reaction mechanism of paper-based diagnostics, including dipstick assays, lateral flow assays (LFAs), and microfluidic paper-based analytical devices (μPADs), as well as the selection of substrates and fabrication methods. Further, we report the advances in improving detection sensitivity, quantification readout, procedure simplification and multi-functionalization of paper-based diagnostics, and discuss the disadvantages of paper-based diagnostics. We envision that miniaturized and integrated paper-based diagnostic devices with the sample-in-answer-out capability will meet the diverse requirements for diagnosis and treatment monitoring at the POC. © 2013 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inkjet-printed microfluidic multianalyte chemical sensing paper.

              This paper presents an inkjet printing method for the fabrication of entire microfluidic multianalyte chemical sensing devices made from paper suitable for quantitative analysis, requiring only a single printing apparatus. An inkjet printing device is used for the fabrication of three-dimensional hydrophilic microfluidic patterns (550-mum-wide flow channels) and sensing areas (1.5 mm x 1.5 mm squares) on filter paper, by inkjet etching, and thereby locally dissolving a hydrophobic poly(styrene) layer obtained by soaking of the filter paper in a 1 wt % solution of poly(styrene) in toluene. In a second step, the same inkjet printing device is used to print "chemical sensing inks", comprising the necessary reagents for colorimetric analytical assays, into well-defined areas of the patterned microfluidic paper devices. The arrangement of the patterns, printed inks, and sensing areas was optimized to obtain homogeneous color responses. The results are "all-inkjet-printed" chemical sensing devices for the simultaneous determination of pH, total protein, and glucose in clinically relevant concentration ranges for urine analysis (0.46-46 muM for human serum albumin, 2.8-28.0 mM for glucose, and pH 5-9). Quantitative data are obtained by digital color analysis in the L*a*b* color space by means of a color scanner and a simple computer program.
                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2015
                2015
                : 5
                : 12
                : 8680-8687
                Article
                10.1039/C4RA12373E
                511c8a8f-1325-4442-b9cd-64fed216fd83
                © 2015
                History

                Comments

                Comment on this article