Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Catalytic antimicrobial robots for biofilm eradication

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Magnetically driven robots can perform complex functions in biological settings with minimal destruction. However, robots designed to damage deleterious biostructures may also be useful. Biofilms are intractable, firmly attached structures associated with drug-resistant infections and surface destruction. We designed catalytic antimicrobial robots (CARs) that precisely, efficiently, and controllably killed, degraded, and removed biofilms. CARs exploiting iron oxide nanoparticles (NPs) with dual catalytic-magnetic functionality (i) generated bactericidal free radicals, (ii) broke down the biofilm exopolysaccharide (EPS) matrix, and (iii) removed the fragmented biofilm debris via magnetic field–driven robotic assemblies. We developed two distinct CAR platforms. The biohybrid CAR platform was formed from NPs and biofilm degradation products. After catalytic bacterial killing and EPS disruption, magnetic field gradients assembled NPs and the biodegraded products into a plow-like superstructure. When driven with an external magnetic field, the biohybrid CAR completely removed biomass in a controlled manner, preventing biofilm regrowth. Biohybrid CARs could be swept over broad swathes of surface or moved over well-defined paths for localized removal with microscale precision. The 3D molded CAR platform is a polymeric soft robot with embedded catalytic-magnetic NPs, formed in a customized 3D-printed mold to perform specific tasks in enclosed domains. Vane-shaped CARs remove biofilms from curved walls of cylindrical tubes, and helicoid-shaped CARs drill through biofilm clogs while simultaneously killing bacteria. We demonstrate applications of CARs to target highly confined anatomical surfaces in the interior of human teeth. These “kill-degrade-and-remove” CARs systems may fight persistent biofilm infections and mitigate biofouling of medical devices and diverse surfaces.

          Related collections

          Most cited references 41

          • Record: found
          • Abstract: found
          • Article: not found

          3D bioprinting of tissues and organs.

          Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biofilms: an emergent form of bacterial life.

            Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.

              Nanoparticles containing magnetic materials, such as magnetite (Fe3O4), are particularly useful for imaging and separation techniques. As these nanoparticles are generally considered to be biologically and chemically inert, they are typically coated with metal catalysts, antibodies or enzymes to increase their functionality as separation agents. Here, we report that magnetite nanoparticles in fact possess an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, which are widely used to oxidize organic substrates in the treatment of wastewater or as detection tools. Based on this finding, we have developed a novel immunoassay in which antibody-modified magnetite nanoparticles provide three functions: capture, separation and detection. The stability, ease of production and versatility of these nanoparticles makes them a powerful tool for a wide range of potential applications in medicine, biotechnology and environmental chemistry.
                Bookmark

                Author and article information

                Journal
                Science Robotics
                Sci. Robot.
                American Association for the Advancement of Science (AAAS)
                2470-9476
                April 24 2019
                April 24 2019
                April 24 2019
                April 24 2019
                : 4
                : 29
                : eaaw2388
                10.1126/scirobotics.aaw2388
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                Comments

                Comment on this article