9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic parameters of piglet survival and birth weight from a two-generation crossbreeding experiment under outdoor conditions designed to disentangle direct and maternal effects.

      Journal of animal science
      Animal Husbandry, Animals, Animals, Newborn, anatomy & histology, genetics, Bayes Theorem, Birth Weight, Breeding, Female, Male, Models, Genetic, Quantitative Trait, Heritable, Swine

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multivariate Bayesian linear-threshold models were used to estimate genetic parameters of peri- and postnatal piglet survival and individual birth weight of piglets reared under outdoor conditions. Data of 21,835 individual piglet observations were available from a 2-generation crossbreeding experiment selected for direct and maternal genetic effects of postnatal piglet survival on piglet and dam levels, respectively. In the first generation, approximately one-half of the Landrace sires used were selected for large or average breeding values of maternal genetic effects on postnatal piglet survival, whereas in the second generation the Large White sires used were selected for direct genetic effects of the same trait. Estimates of direct and maternal heritability were 0.21 and 0.15, 0.24 and 0.14, and 0.36 and 0.28 for piglet survival at birth and during the nursing period, and individual birth weight, respectively. In particular, direct heritabilities are substantially larger than those from the literature estimated for indoor-reared piglets, suggesting that genetic effects of these traits are substantially greater under outdoor conditions. Direct or maternal genetic correlations between survival traits or with birth weight were small (ranging from 0.06 to 0.17), indicating that peri- and postnatal survival are genetically under rather different control, and survival was only slightly positively influenced by birth weight. There were significant (P < 0.05) negative genetic correlations between direct and maternal genetic effects within each of the analyzed traits ranging from -0.36 to -0.45, which have to be considered when selecting for piglet survival. Adjustment of traits for litter size or inclusion of genetic groups showed insignificant effects on the magnitude of the estimated genetic parameters. The magnitude of genetic parameters suggested that there is substantial potential for genetic improvement of survival traits and birth weight in direct and maternal genetic effects, especially when piglets are kept under outdoor conditions.

          Related collections

          Author and article information

          Comments

          Comment on this article