10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estrogen-immuno-neuromodulation disorders in menopausal depression

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A significant decrease in estrogen levels puts menopausal women at high risk for major depression, which remains difficult to cure despite its relatively clear etiology. With the discovery of abnormally elevated inflammation in menopausal depressed women, immune imbalance has become a novel focus in the study of menopausal depression. In this paper, we examined the characteristics and possible mechanisms of immune imbalance caused by decreased estrogen levels during menopause and found that estrogen deficiency disrupted immune homeostasis, especially the levels of inflammatory cytokines through the ERα/ERβ/GPER-associated NLRP3/NF-κB signaling pathways. We also analyzed the destruction of the blood-brain barrier, dysfunction of neurotransmitters, blockade of BDNF synthesis, and attenuation of neuroplasticity caused by inflammatory cytokine activity, and investigated estrogen-immuno-neuromodulation disorders in menopausal depression. Current research suggests that drugs targeting inflammatory cytokines and NLRP3/NF-κB signaling molecules are promising for restoring homeostasis of the estrogen-immuno-neuromodulation system and may play a positive role in the intervention and treatment of menopausal depression.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12974-024-03152-1.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants.

          Depression is a common, devastating illness. Current pharmacotherapies help many patients, but high rates of a partial response or no response, and the delayed onset of the effects of antidepressant therapies, leave many patients inadequately treated. However, new insights into the neurobiology of stress and human mood disorders have shed light on mechanisms underlying the vulnerability of individuals to depression and have pointed to novel antidepressants. Environmental events and other risk factors contribute to depression through converging molecular and cellular mechanisms that disrupt neuronal function and morphology, resulting in dysfunction of the circuitry that is essential for mood regulation and cognitive function. Although current antidepressants, such as serotonin-reuptake inhibitors, produce subtle changes that take effect in weeks or months, it has recently been shown that treatment with new agents results in an improvement in mood ratings within hours of dosing patients who are resistant to typical antidepressants. Within a similar time scale, these new agents have also been shown to reverse the synaptic deficits caused by stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Dual microglia effects on blood brain barrier permeability induced by systemic inflammation

            Microglia survey brain parenchyma, responding to injury and infections. Microglia also respond to systemic disease, but the role of blood–brain barrier (BBB) integrity in this process remains unclear. Using simultaneous in vivo imaging, we demonstrated that systemic inflammation induces CCR5-dependent migration of brain resident microglia to the cerebral vasculature. Vessel-associated microglia initially maintain BBB integrity via expression of the tight-junction protein Claudin-5 and make physical contact with endothelial cells. During sustained inflammation, microglia phagocytose astrocytic end-feet and impair BBB function. Our results show microglia play a dual role in maintaining BBB integrity with implications for elucidating how systemic immune-activation impacts neural functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments

              The mechanisms underlying the pathophysiology and treatment of depression and stress-related disorders remain unclear, but studies in depressed patients and rodent models are beginning to yield promising insights. These studies demonstrate that depression and chronic stress exposure cause atrophy of neurons in cortical and limbic brain regions implicated in depression, and brain imaging studies demonstrate altered connectivity and network function in the brains of depressed patients. Studies of the neurobiological basis of the these alterations have focused on both the principle, excitatory glutamate neurons, as well as inhibitory GABA interneurons. They demonstrate structural, functional, and neurochemical deficits in both major neuronal types that could lead to degradation of signal integrity in cortical and hippocampal regions. The molecular mechanisms underlying these changes have not been identified but are thought to be related to stress induced excitotoxic effects in combination with elevated adrenal glucocorticoids and inflammatory cytokines, (as well as other environmental factors). Transcriptomic studies are beginning to demonstrate important sex differences and together with genomic studies are starting to reveal mechanistic domains of overlap and uniqueness with regards to risk and pathophysiological mechanisms with schizophrenia and bipolar disorder. These studies also implicate GABA and glutamate dysfunction as well as immunologic mechanisms. While current antidepressants have significant time lag and efficacy limitations, new, rapid acting agents that target the glutamate and GABA systems address these issues and offer superior therapeutic interventions for this widespread and debilitating disorder. The review by Duman and colleagues discusses evidence that depression is characterized by deficits of excitatory and inhibitory neurons, while new rapid acting agents that target the glutamate and GABA systems address these issues and offer superior therapeutic interventions.
                Bookmark

                Author and article information

                Contributors
                tcz1980@126.com
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                19 June 2024
                19 June 2024
                2024
                : 21
                : 159
                Affiliations
                [1 ]College of Life Science, Henan Normal University, ( https://ror.org/00s13br28) Xinxiang, 453007 Henan China
                [2 ]Department of Neurology, Xinxiang City First People’s Hospital, Xinxiang, 453000 Henan China
                Article
                3152
                10.1186/s12974-024-03152-1
                11188190
                38898454
                512b9537-4efb-4e8f-8bec-560a608d18e1
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 20 April 2024
                : 11 June 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100017700, Henan Provincial Science and Technology Research Project;
                Award ID: 242102310555
                Categories
                Review
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Neurosciences
                estrogen,menopausal depression,inflammatory cytokine,blood-brain barrier,neurotransmitter,bdnf,neuroplasticity

                Comments

                Comment on this article