36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Major clades of Agaricales: a multilocus phylogenetic overview

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales).

          P. Matheny (2005)
          Approximately 3000 bp across 84 taxa have been analyzed for variable regions of RPB1, RPB2, and nLSU-rDNA to infer phylogenetic relationships in the large ectomycorrhizal mushroom genus Inocybe (Agaricales; Basidiomycota). This study represents the first effort to combine variable regions of RPB1 and RPB2 with nLSU-rDNA for low-level phylogenetic studies in mushroom-forming fungi. Combination of the three loci increases non-parametric bootstrap support, Bayesian posterior probabilities, and resolution for numerous clades compared to separate gene analyses. These data suggest the evolution of at least five major lineages in Inocybe-the Inocybe clade, the Mallocybe clade, the Auritella clade, the Inosperma clade, and the Pseudosperma clade. Additionally, many clades nested within each major lineage are strongly supported. These results also suggest the family Crepiodataceae sensu stricto is sister to Inocybe. Recognition of Inocybe at the family level, the Inocybaceae, is recommended.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            One hundred and seventeen clades of euagarics.

            This study provides a first broad systematic treatment of the euagarics as they have recently emerged in phylogenetic systematics. The sample consists of 877 homobasidiomycete taxa and includes approximately one tenth (ca. 700 species) of the known number of species of gilled mushrooms that were traditionally classified in the order Agaricales. About 1000 nucleotide sequences at the 5(') end of the nuclear large ribosomal subunit gene (nLSU) were produced for each taxon. Phylogenetic analyses of nucleotide sequence data employed unequally weighted parsimony and bootstrap methods. Clades revealed by the analyses support the recognition of eight major groups of homobasidiomycetes that cut across traditional lines of classification, in agreement with other recent phylogenetic studies. Gilled fungi comprise the majority of species in the euagarics clade. However, the recognition of a monophyletic euagarics results in the exclusion from the clade of several groups of gilled fungi that have been traditionally classified in the Agaricales and necessitates the inclusion of several clavaroid, poroid, secotioid, gasteroid, and reduced forms that were traditionally classified in other basidiomycete orders. A total of 117 monophyletic groups (clades) of euagarics can be recognized on the basis on nLSU phylogeny. Though many clades correspond to traditional taxonomic groups, many do not. Newly discovered phylogenetic affinities include for instance relationships of the true puffballs (Lycoperdales) with Agaricaceae, of Panellus and the poroid fungi Dictyopanus and Favolaschia with Mycena, and of the reduced fungus Caripia with Gymnopus. Several clades are best supported by ecological, biochemical, or trophic habits rather than by morphological similarities. (c) 2002 Elsevier Science (USA).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of fungus-growing termites and their mutualistic fungal symbionts.

              We have estimated phylogenies of fungus-growing termites and their associated mutualistic fungi of the genus Termitomyces using Bayesian analyses of DNA sequences. Our study shows that the symbiosis has a single African origin and that secondary domestication of other fungi or reversal of mutualistic fungi to a free-living state has not occurred. Host switching has been frequent, especially at the lower taxonomic levels, and nests of single termite species can have different symbionts. Data are consistent with horizontal transmission of fungal symbionts in both the ancestral state of the mutualism and most of the extant taxa. Clonal vertical transmission of fungi, previously shown to be common in the genus Microtermes (via females) and in the species Macrotermes bellicosus (via males) [Johnson, R. A., Thomas, R. J., Wood, T. G. & Swift, M. J. (1981) J. Nat. Hist. 15, 751-756], is derived with two independent origins. Despite repeated host switching, statistical tests taking phylogenetic uncertainty into account show a significant congruence between the termite and fungal phylogenies, because mutualistic interactions at higher taxonomic levels show considerable specificity. We identify common characteristics of fungus-farming evolution in termites and ants, which apply despite the major differences between these two insect agricultural systems. We hypothesize that biparental colony founding may have constrained the evolution of vertical symbiont transmission in termites but not in ants where males die after mating.
                Bookmark

                Author and article information

                Journal
                Mycologia
                Mycologia
                Informa UK Limited
                0027-5514
                1557-2536
                January 23 2017
                January 23 2017
                : 98
                : 6
                : 982-995
                Article
                10.1080/15572536.2006.11832627
                17486974
                512c7e99-b9d7-4a44-9603-e3193f24c051
                © 2017
                History

                Comments

                Comment on this article