39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Voltage-dependent Gating Rearrangements in the Intracellular T1–T1 Interface of a K + Channel

      research-article
      ,
      The Journal of General Physiology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The intracellular tetramerization domain (T1) of most eukaryotic voltage-gated potassium channels (Kv channels) exists as a “hanging gondola” below the transmembrane regions that directly control activation gating via the electromechanical coupling between the S4 voltage sensor and the main S6 gate. However, much less is known about the putative contribution of the T1 domain to Kv channel gating. This possibility is mechanistically intriguing because the T1–S1 linker connects the T1 domain to the voltage-sensing domain. Previously, we demonstrated that thiol-specific reagents inhibit Kv4.1 channels by reacting in a state-dependent manner with native Zn 2+ site thiolate groups in the T1–T1 interface; therefore, we concluded that the T1–T1 interface is functionally active and not protected by Zn 2+ (Wang, G., M. Shahidullah, C.A. Rocha, C. Strang, P.J. Pfaffinger, and M. Covarrubias. 2005. J. Gen. Physiol. 126:55–69). Here, we co-expressed Kv4.1 channels and auxiliary subunits (KChIP-1 and DPPX-S) to investigate the state and voltage dependence of the accessibility of MTSET to the three interfacial cysteines in the T1 domain. The results showed that the average MTSET modification rate constant ( k MTSET) is dramatically enhanced in the activated state relative to the resting and inactivated states (∼260- and ∼47-fold, respectively). Crucially, under three separate conditions that produce distinct activation profiles, k MTSET is steeply voltage dependent in a manner that is precisely correlated with the peak conductance–voltage relations. These observations strongly suggest that Kv4 channel gating is tightly coupled to voltage-dependent accessibility changes of native T1 cysteines in the intersubunit Zn 2+ site. Furthermore, cross-linking of cysteine pairs across the T1–T1 interface induced substantial inhibition of the channel, which supports the functionally dynamic role of T1 in channel gating. Therefore, we conclude that the complex voltage-dependent gating rearrangements of eukaryotic Kv channels are not limited to the membrane-spanning core but must include the intracellular T1–T1 interface. Oxidative stress in excitable tissues may perturb this interface to modulate Kv4 channel function.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Voltage sensor of Kv1.2: structural basis of electromechanical coupling.

          Voltage-dependent ion channels contain voltage sensors that allow them to switch between nonconductive and conductive states over the narrow range of a few hundredths of a volt. We investigated the mechanism by which these channels sense cell membrane voltage by determining the x-ray crystal structure of a mammalian Shaker family potassium ion (K+) channel. The voltage-dependent K+ channel Kv1.2 grew three-dimensional crystals, with an internal arrangement that left the voltage sensors in an apparently native conformation, allowing us to reach three important conclusions. First, the voltage sensors are essentially independent domains inside the membrane. Second, they perform mechanical work on the pore through the S4-S5 linker helices, which are positioned to constrict or dilate the S6 inner helices of the pore. Third, in the open conformation, two of the four conserved Arg residues on S4 are on a lipid-facing surface and two are buried in the voltage sensor. The structure offers a simple picture of how membrane voltage influences the open probability of the channel.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gated access to the pore of a voltage-dependent K+ channel.

            Voltage-activated K+ channels are integral membrane proteins that open or close a K(+)-selective pore in response to changes in transmembrane voltage. Although the S4 region of these channels has been implicated as the voltage sensor, little is known about how opening and closing of the pore is accomplished. We explored the gating process by introducing cysteines at various positions thought to lie in or near the pore of the Shaker K+ channel, and by testing their ability to be chemically modified. We found a series of positions in the S6 transmembrane region that react rapidly with water-soluble thiol reagents in the open state but not the closed state. An open-channel blocker can protect several of these cysteines, showing that they lie in the ion-conducting pore. At two of these sites, Cd2+ ions bind to the cysteines without affecting the energetics of gating; at a third site, Cd2+ binding holds the channel open. The results suggest that these channels open and close by the movement of an intracellular gate, distinct from the selectivity filter, that regulates access to the pore.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmembrane movement of the shaker K+ channel S4.

              We have probed internal and external accessibility of S4 residues to the membrane-impermeant thiol reagent methanethiosulfonate-ethyltrimethlammonium (MTSET) in both open and closed, cysteine-substituted Shaker K+ channels. Our results indicate that S4 traverses the membrane with no more than 5 amino acids in the closed state, and that the distribution of buried residues changes when channels open. This change argues for a displacement of S4 through the plane of the membrane in which an initially intracellular residue moves to within 3 amino acids of the extracellular solution. These results demonstrate that the putative voltage-sensing charges of S4 actually reside in the membrane and that they move outward when channels open. We consider constraints placed on channel structure by these results.
                Bookmark

                Author and article information

                Journal
                J Gen Physiol
                The Journal of General Physiology
                The Rockefeller University Press
                0022-1295
                1540-7748
                April 2006
                : 127
                : 4
                : 391-400
                Affiliations
                Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107
                Author notes

                Correspondence to Manuel Covarrubias: manuel.covarrubias@ 123456jefferson.edu

                Article
                200509442
                10.1085/jgp.200509442
                2151515
                16533897
                51300779-fb02-45ad-9937-e40a160e7b53
                Copyright © 2006, The Rockefeller University Press
                History
                : 21 October 2005
                : 15 February 2006
                Categories
                Articles
                Article

                Anatomy & Physiology
                Anatomy & Physiology

                Comments

                Comment on this article