9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stages in the assembly of pleated and smooth septate junctions in developing insect embryos.

      Journal of Cell Science
      Grasshoppers, ultrastructure, Animals, embryology, Microscopy, Electron, Central Nervous System, Intercellular Junctions

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The stages that occur during the assembly of both pleated and smooth septate junctions in developing insect tissues have been examined. The oesophagus and mid-gut of the embryonic moth, and the oesophagus and central nervous system (CNS) of the locust embryo, have been investigated in thin sections and by freeze-fracture during the course of membrane biogenesis. The smooth septate junctions developing between the lateral borders of the mid-gut exhibit, in the early stages, individual intramembranous particles becoming aligned into short ridges. These ultimately migrate over the membrane face and fuse into longer arrays, which become stacked in parallel with other ridges to form the characteristic mature form of the junction just before hatching. Pleated septate junctions occur between the cells both of the oesophagus and of the perineurium, which ensheathes the neurones and the neuroglial cells in the locust CNS; these are also fully formed by the end of embryonic development. The pleated junctions appear to be assembled during the later stages of CNS or gut differentiation, arising first in embryos about two-thirds of the way through development. During their maturation, the initial event seems to be a membrane depression in the P face, which occurs in patches over the presumptive junctional membrane. Into these depressed regions or 'formation-plaque' areas, 8-10 nm particles appear to be inserted intramembranously in apparently random arrays. These particles are the most common elements but larger particles are also present; the former ultimately become aligned in a row. With time, other intramembranous particles come to lie in rows parallel to the original one. By hatching, the typical undulating stacks of parallel intramembranous particle rows are fully formed. Gap junctions also form between the same perineurial or oesophageal cells, usually before, but in some cases at the same time, or just after, the septate junctions have been assembled. Tricellular associations between cells also appear around the same time in embryonic development. The simultaneous assembly of these different junctions reflects a high degree of organizational capacity at the membrane level.

          Related collections

          Author and article information

          Journal
          7166566
          10.1242/jcs.56.1.245

          Grasshoppers,ultrastructure,Animals,embryology,Microscopy, Electron,Central Nervous System,Intercellular Junctions

          Comments

          Comment on this article