4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effective fraction of Bletilla striata reduces the inflammatory cytokine production induced by water and organic extracts of airborne fine particulate matter (PM 2.5) in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Bletilla striata is a traditional Chinese medicine used to treat hemorrhage, scald, gastric ulcer, pulmonary diseases and inflammations. In this study, we investigated bioactivity of the effective fraction of B. striata (EFB) in reducing the inflammatory cytokine production induced by water or organic extracts of PM 2.5.

          Methods

          PM 2.5 extracts were collected and analyzed by chromatographic system and inductively coupled plasma mass spectrometer. Cell viability was measured using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, and cell supernatant was analyzed by flow cytometry, ELISA, and qRT-PCR in cultured mouse macrophage cell line RAW264.7 treated with EFB and PM 2.5 extracts. Expressions of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway were measured by Western blot.

          Results

          PM 2.5 composition is complex and the toxicity of PM 2.5 extracts were not noticeable. The treatment of EFB at a wide dose-range of 0–40 μg/mL did not cause significant change of RAW264.7 cell proliferation. EFB pretreatment decreased the inflammatory cytokines in the macrophage. Further analysis showed that EFB significantly attenuated PM 2.5-induced proinflammatory protein expression and downregulated the levels of phosphorylated NF-κBp65, inhibitor of kappa B (IκB)-α, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38.

          Conclusions

          Our study demonstrated the potential effectiveness of B. striata extracts for treating PM 2.5-triggered pulmonary inflammation.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The Nalp3 inflammasome is essential for the development of silicosis.

          Inhalation of crystalline silica and asbestos is known to cause the progressive pulmonary fibrotic disorders silicosis and asbestosis, respectively. Although alveolar macrophages are believed to initiate these inflammatory responses, the mechanism by which this occurs has been unclear. Here we show that the inflammatory response and subsequent development of pulmonary fibrosis after inhalation of silica is dependent on the Nalp3 inflammasome. Stimulation of macrophages with silica results in the activation of caspase-1 in a Nalp3-dependent manner. Macrophages deficient in components of the Nalp3 inflammasome were incapable of secreting the proinflammatory cytokines interleukin (IL)-1beta and IL-18 in response to silica. Similarly, asbestos was capable of activating caspase-1 in a Nalp3-dependent manner. Activation of the Nalp3 inflammasome by silica required both an efflux of intracellular potassium and the generation of reactive oxygen species. This study demonstrates a key role for the Nalp3 inflammasome in the pathogenesis of pneumoconiosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways.

            A crucial step in atherogenesis is the infiltration of the subendothelial space of large arteries by monocytes where they differentiate into macrophages and transform into lipid-loaded foam cells. Macrophages are heterogeneous cells that adapt their response to environmental cytokines. Th1 cytokines promote monocyte differentiation into M1 macrophages, whereas Th2 cytokines trigger an "alternative" M2 phenotype. We previously reported the presence of CD68(+) mannose receptor (MR)(+) M2 macrophages in human atherosclerotic plaques. However, the function of these plaque CD68(+)MR(+) macrophages is still unknown. Histological analysis revealed that CD68(+)MR(+) macrophages locate far from the lipid core of the plaque and contain smaller lipid droplets compared to CD68(+)MR(-) macrophages. Interleukin (IL)-4-polarized CD68(+)MR(+) macrophages display a reduced capacity to handle and efflux cellular cholesterol because of low expression levels of the nuclear receptor liver x receptor (LXR)α and its target genes, ABCA1 and apolipoprotein E, attributable to the high 15-lipoxygenase activity in CD68(+)MR(+) macrophages. By contrast, CD68(+)MR(+) macrophages highly express opsonins and receptors involved in phagocytosis, resulting in high phagocytic activity. In M2 macrophages, peroxisome proliferator-activated receptor (PPAR)γ activation enhances the phagocytic but not the cholesterol trafficking pathways. These data identify a distinct macrophage subpopulation with a low susceptibility to become foam cells but high phagocytic activity resulting from different regulatory activities of the PPARγ-LXRα pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Neuroinflammation and Oxidative Stress in Diabetic Neuropathy: Futuristic Strategies Based on These Targets

              In Diabetes, the chronic hyperglycemia and associated complications affecting peripheral nerves are one of the most commonly occurring microvascular complications with an overall prevalence of 50–60%. Among the vascular complications of diabetes, diabetic neuropathy is the most painful and disabling, fatal complication affecting the quality of life in patients. Several theories of etiologies surfaced down the lane, amongst which the oxidative stress mediated damage in neurons and surrounding glial cell has gained attention as one of the vital mechanisms in the pathogenesis of neuropathy. Mitochondria induced ROS and other oxidants are responsible for altering the balance between oxidants and innate antioxidant defence of the body. Oxidative-nitrosative stress not only activates the major pathways namely, polyol pathway flux, advanced glycation end products formation, activation of protein kinase C, and overactivity of the hexosamine pathway, but also initiates and amplifies neuroinflammation. The cross talk between oxidative stress and inflammation is due to the activation of NF- κ B and AP-1 and inhibition of Nrf2, peroxynitrite mediate endothelial dysfunction, altered NO levels, and macrophage migration. These all culminate in the production of proinflammatory cytokines which are responsible for nerve tissue damage and debilitating neuropathies. This review focuses on the relationship between oxidative stress and neuroinflammation in the development and progression of diabetic neuropathy.
                Bookmark

                Author and article information

                Contributors
                dzszjtcm@163.com
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central (London )
                1472-6882
                16 December 2019
                16 December 2019
                2019
                : 19
                : 369
                Affiliations
                [1 ]ISNI 0000 0000 8744 8924, GRID grid.268505.c, College of Life Science, Zhejiang Chinese Medical University, ; Zhejiang, 310053 Hangzhou China
                [2 ]ISNI 0000 0000 8744 8924, GRID grid.268505.c, College of Medical Technology, Zhejiang Chinese Medical University, ; Zhejiang, 310053 Hangzhou China
                [3 ]ISNI 0000 0000 8744 8924, GRID grid.268505.c, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, ; Hangzhou, 310053 China
                Article
                2790
                10.1186/s12906-019-2790-3
                6916096
                31842843
                515cf309-d9f6-45cc-867c-72a8fdbafa1c
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 25 September 2019
                : 8 December 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100014718, Innovative Research Group Project of the National Natural Science Foundation of China;
                Award ID: 81673672
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Complementary & Alternative medicine
                bletilla striata (thunb.) rchb.f.,pm2.5 extracts,macrophage,inflammation,nf-κb/mapk pathway

                Comments

                Comment on this article