Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti- Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence of invading ookinetes, thereby inducing anti- Plasmodium immune responses.
The malarial parasite Plasmodium has to traverse the gut wall of the Anopheles mosquito in order to complete its lifecycle and to be transmitted between hosts. At the midgut stage of infection, the mosquito activates immune responses to eliminate most invading parasites. The features of these immune responses are not very well understood and have mainly been examined using the rodent parasite model P. berghei. Here the authors investigated the relationship between the Anopheles gambiae responses against the human pathogen P. falciparum, the rodent parasite P. berghei, and bacterial infections, at both the gene expression and functional levels. The mosquito responses against these pathogens were quite diverse, and the defense against the two malaria parasite species involved both common and species-specific components. Malaria-infected blood was sufficient to activate anti- Plasmodium immune responses, even in the absence of midgut invasion. Through this mechanism, the mosquito can initiate its defense against Plasmodium prior to invasion of the gut. Mosquito genes that could negatively influence Plasmodium development were also capable of regulating the resistance to bacterial infection, but several of the antibacterial genes had no effect on Plasmodium; thus, the mosquito apparently utilizes its antibacterial defense systems against the malaria parasite.