32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Screening food-borne and zoonotic pathogens associated with livestock practices in the Sumapaz region, Cundinamarca, Colombia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hazardous practices regarding antibiotics misuse, unsanitary milking procedures, and the commercial sales of raw milk and unpasteurized dairy products are currently being practiced by livestock farmers in the Sumapaz region (Colombia). The purpose of this study was to screen for food-borne and zoonotic pathogens associated with local livestock practices. We evaluated 1098 cows from 46 livestock farms in the Sumapaz region that were selected by random. Of the total population of cattle, 962 animals (88%) were tested for bovine TB using a caudal-fold tuberculin test and 546 (50%) for brucellosis by a competitive ELISA. In the population tested, 23 cows were positive for Brucella sp. representing a 4.2% seroprevalence and no cases of bovine tuberculosis were found. In addition, food-borne contamination with Escherichia coli and Staphylococcus aureus was assessed together with antibiotic susceptibility for ten different antibiotics in milk samples from 16 livestock farms. We found that 12 of the farms (75%) were contaminated with these food-borne pathogens. Noteworthy, all of the isolated pathogenic strains were resistant to multiple antibiotics, primarily to oxytetracycline and erythromycin. Our findings suggest that livestock products could be a source of exposure to Brucella and multidrug-resistant E. coli and S. aureus strains as a result of unhygienic livestock practices in the Sumapaz region. Training in good farming practices is the key to improving safety in food production.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Comparing the yields of organic and conventional agriculture.

          Numerous reports have emphasized the need for major changes in the global food system: agriculture must meet the twin challenge of feeding a growing population, with rising demand for meat and high-calorie diets, while simultaneously minimizing its global environmental impacts. Organic farming—a system aimed at producing food with minimal harm to ecosystems, animals or humans—is often proposed as a solution. However, critics argue that organic agriculture may have lower yields and would therefore need more land to produce the same amount of food as conventional farms, resulting in more widespread deforestation and biodiversity loss, and thus undermining the environmental benefits of organic practices. Here we use a comprehensive meta-analysis to examine the relative yield performance of organic and conventional farming systems globally. Our analysis of available data shows that, overall, organic yields are typically lower than conventional yields. But these yield differences are highly contextual, depending on system and site characteristics, and range from 5% lower organic yields (rain-fed legumes and perennials on weak-acidic to weak-alkaline soils), 13% lower yields (when best organic practices are used), to 34% lower yields (when the conventional and organic systems are most comparable). Under certain conditions—that is, with good management practices, particular crop types and growing conditions—organic systems can thus nearly match conventional yields, whereas under others it at present cannot. To establish organic agriculture as an important tool in sustainable food production, the factors limiting organic yields need to be more fully understood, alongside assessments of the many social, environmental and economic benefits of organic farming systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Antibiotics in agriculture and the risk to human health: how worried should we be?

            The use of antibiotics in agriculture is routinely described as a major contributor to the clinical problem of resistant disease in human medicine. While a link is plausible, there are no data conclusively showing the magnitude of the threat emerging from agriculture. Here, we define the potential mechanisms by which agricultural antibiotic use could lead to human disease and use case studies to critically assess the potential risk from each. The three mechanisms considered are as follows 1: direct infection with resistant bacteria from an animal source, 2: breaches in the species barrier followed by sustained transmission in humans of resistant strains arising in livestock, and 3: transfer of resistance genes from agriculture into human pathogens. Of these, mechanism 1 is the most readily estimated, while significant is small in comparison with the overall burden of resistant disease. Several cases of mechanism 2 are known, and we discuss the likely livestock origins of resistant clones of Staphylococcus aureus and Enterococcus faecium, but while it is easy to show relatedness the direction of transmission is hard to assess in robust fashion. More difficult yet to study is the contribution of mechanism 3, which may be the most important of all.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Food Safety in Low and Middle Income Countries

              Evidence on foodborne disease (FBD) in low and middle income countries (LMICs) is still limited, but important studies in recent years have broadened our understanding. These suggest that developing country consumers are concerned about FBD; that most of the known burden of FBD disease comes from biological hazards; and, that most FBD is the result of consumption of fresh, perishable foods sold in informal markets. FBD is likely to increase in LMICs as the result of massive increases in the consumption of risky foods (livestock and fish products and produce) and lengthening and broadening value chains. Although intensification of agricultural production is a strong trend, so far agro-industrial production and modern retail have not demonstrated clear advantages in food safety and disease control. There is limited evidence on effective, sustainable and scalable interventions to improve food safety in domestic markets. Training farmers on input use and good practices often benefits those farmers trained, but has not been scalable or sustainable, except where good practices are linked to eligibility for export. Training informal value chain actors who receive business benefits from being trained has been more successful. New technologies, growing public concern and increased emphasis on food system governance can also improve food safety.
                Bookmark

                Author and article information

                Contributors
                (+57-1) 8281483 , vilma@mail.unicundi.edu.co
                Journal
                Trop Anim Health Prod
                Trop Anim Health Prod
                Tropical Animal Health and Production
                Springer Netherlands (Dordrecht )
                0049-4747
                1573-7438
                11 March 2017
                11 March 2017
                2017
                : 49
                : 4
                : 739-745
                Affiliations
                [1 ]GRID grid.441728.c, Faculty of Agricultural Sciences, , Universidad de Cundinamarca, ; Diagonal 18 No. 20-29, Fusagasugá, Cundinamarca 252211 Colombia
                [2 ]GRID grid.10825.3e, Department of Biochemistry and Molecular Biology, , University of Southern Denmark, ; Campusvej 55, 5230 Odense M, Denmark
                [3 ]GRID grid.10689.36, Department of Chemistry, Faculty of Sciences, , Universidad Nacional de Colombia, ; Carrera 30, No. 45-03, Ciudad Universitaria, Bogotá, Colombia
                Article
                1251
                10.1007/s11250-017-1251-6
                5375959
                28283872
                516caad4-f9cd-4d0b-b0c5-64338af2222d
                © The Author(s) 2017

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 22 July 2016
                : 15 February 2017
                Funding
                Funded by: Committee of Livestock Farmers from the Sumapaz region (COMIGAN-Sumapaz)
                Funded by: Colombian Association for Science Advance
                Funded by: Universidad de Cundinamarca
                Categories
                Regular Articles
                Custom metadata
                © Springer Science+Business Media Dordrecht 2017

                Animal science & Zoology
                bovine brucellosis,bovine tuberculosis,escherichia coli,staphylococcus aureus,zoonoses,antibiotic resistance

                Comments

                Comment on this article