41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of electroacupuncture on recovery of the electrophysiological properties of the rabbit gastrocnemius after contusion: an in vivo animal study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Our preliminary studies indicated that electroacupuncture (EA) at the ST36 and Ashi acupoints could promote regeneration of the rabbit gastrocnemius (GM) by improving microcirculation perfusion, promoting the recovery of myofiber structures, and inhibiting excessive fibrosis. However, the effects of EA on recovery of the electrophysiological properties of the GM after contusion are not yet clear. Thus, the purpose of this study was to investigate the effects of EA at the Zusanli (ST36) and Ashi acupoints with regard to recovery of the electrophysiological properties of the rabbit GM after contusion.

          Methods

          Forty-five rabbits were randomly divided into three groups: normal, contusion, and EA. After an acute GM contusion was produced (in rabbits in the contusion and EA groups), rabbits in the EA group were treated with electrostimulation at the ST36 and Ashi acupoints with 0.4 mA (2 Hz) for 15 min. The contusion group received no EA treatment. At different time points (7, 14, and 28 days) after contusion, we performed surface electromyography (EMG) and measured the nerve conduction velocity (NCV) of the GM and the GM branch of the tibial nerve. We also examined acetylcholinesterase (AchE) and Agrin expression in the neuromuscular junction (NMJ) via immunohistochemistry.

          Results

          Compared with the contusion group, the EMG amplitude and NCV in rabbits in the EA group were significantly higher at all time points after contusion. AchE and Agrin expression in the EA group were significantly higher than those in the contusion group.

          Conclusions

          Our results showed that EA at the ST36 and Ashi acupoints effectively promoted recovery of the electrophysiological properties of the rabbit GM after contusion. The effects of EA were realized by promotion of the regeneration of myofibers and nerve fibers, as well as acceleration of NMJ reconstruction by upregulation of AchE and Agrin expression in the motor endplate area.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Agrin binds to the N-terminal region of Lrp4 protein and stimulates association between Lrp4 and the first immunoglobulin-like domain in muscle-specific kinase (MuSK).

          Neuromuscular synapse formation depends upon coordinated interactions between motor neurons and muscle fibers, leading to the formation of a highly specialized postsynaptic membrane and a highly differentiated nerve terminal. Synapse formation begins as motor axons approach muscles that are prepatterned in the prospective synaptic region in a manner that depends upon Lrp4, a member of the LDL receptor family, and muscle-specific kinase (MuSK), a receptor tyrosine kinase. Motor axons supply Agrin, which binds Lrp4 and stimulates further MuSK phosphorylation, stabilizing nascent synapses. How Agrin binds Lrp4 and stimulates MuSK kinase activity is poorly understood. Here, we demonstrate that Agrin binds to the N-terminal region of Lrp4, including a subset of the LDLa repeats and the first of four β-propeller domains, which promotes association between Lrp4 and MuSK and stimulates MuSK kinase activity. In addition, we show that Agrin stimulates the formation of a functional complex between Lrp4 and MuSK on the surface of myotubes in the absence of the transmembrane and intracellular domains of Lrp4. Further, we demonstrate that the first Ig-like domain in MuSK, which shares homology with the NGF-binding region in Tropomyosin Receptor Kinase (TrKA), is required for MuSK to bind Lrp4. These findings suggest that Lrp4 is a cis-acting ligand for MuSK, whereas Agrin functions as an allosteric and paracrine regulator to promote association between Lrp4 and MuSK.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice

            ApoE, ApoE receptors and APP cooperate in the pathogenesis of Alzheimer’s disease. Intriguingly, the ApoE receptor LRP4 and APP are also required for normal formation and function of the neuromuscular junction (NMJ). In this study, we show that APP interacts with LRP4, an obligate co-receptor for muscle-specific tyrosine kinase (MuSK). Agrin, a ligand for LRP4, also binds to APP and co-operatively enhances the interaction of APP with LRP4. In cultured myotubes, APP synergistically increases agrin-induced acetylcholine receptor (AChR) clustering. Deletion of the transmembrane domain of LRP4 (LRP4 ECD) results in growth retardation of the NMJ, and these defects are markedly enhanced in APP−/−;LRP4ECD/ECD mice. Double mutant NMJs are significantly reduced in size and number, resulting in perinatal lethality. Our findings reveal novel roles for APP in regulating neuromuscular synapse formation through hetero-oligomeric interaction with LRP4 and agrin and thereby provide new insights into the molecular mechanisms that govern NMJ formation and maintenance. DOI: http://dx.doi.org/10.7554/eLife.00220.001
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats.

              The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
                Bookmark

                Author and article information

                Contributors
                liu200578@163.com
                wgls2001@163.com
                cia100@sina.com
                xuqianwei11@163.com
                xc2002812@126.com
                zryylp@126.com
                413202450@qq.com
                80547851@qq.com
                crrcairongrong@163.com
                1402317340@qq.com
                zhangqx19890809@163.com
                yunting1118@sina.com
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central (London )
                1472-6882
                19 March 2015
                19 March 2015
                2015
                : 15
                : 69
                Affiliations
                [ ]Department of Graduate School, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Road, Chaoyang District, Beijing 100029 China
                [ ]Department of Orthopedics, China-Japan Friendship Hospital, No. 2, Yinghua East Road, Chaoyang District, Beijing 100029 China
                [ ]College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Road, Chaoyang District, Beijing 100029 China
                [ ]Institute of Clinical Medicine, China-Japan Friendship Hospital, No. 2, Yinghua East Road, Chaoyang District, Beijing 100029 China
                [ ]Department of Graduate School, Peking University of Health Science Center, No. 38, College Road, Haidian District, Beijing 100191 China
                Article
                601
                10.1186/s12906-015-0601-z
                4376503
                25887510
                51782278-9b3e-4eeb-9d4c-d4882b786ecb
                © LIU et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 December 2014
                : 9 March 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Complementary & Alternative medicine
                electroacupuncture,electromyography,nerve conduction velocity,acetylcholinesterase,agrin

                Comments

                Comment on this article