12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of the Immunomodulatory Activity of the Chicken NK-Lysin-Derived Peptide cNK-2

      research-article
      1 , a , 1 , 2
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chicken NK-lysin (cNK-lysin), the chicken homologue of human granulysin, is a cationic amphiphilic antimicrobial peptide (AMP) that is produced by cytotoxic T cells and natural killer cells. We previously demonstrated that cNK-lysin and cNK-2, a synthetic peptide incorporating the core α-helical region of cNK-lysin, have antimicrobial activity against apicomplexan parasites such as Eimeria spp., via membrane disruption. In addition to the antimicrobial activity of AMPs, the immunomodulatory activity of AMPs mediated by their interactions with host cells is increasingly recognized. Thus, in this study, we investigated whether cNK-lysin derived peptides modulate the immune response in the chicken macrophage cell line HD11 and in chicken primary monocytes by evaluating the induction of chemokines, anti-inflammatory properties, and activation of signalling pathways. cNK-2 induced the expression of CCL4, CCL5 and interleukin(IL)-1β in HD11 cells and CCL4 and CCL5 in primary monocytes. We also determined that cNK-2 suppresses the lipopolysaccharide-induced inflammatory response by abrogating IL-1β expression. The immunomodulatory activity of cNK-2 involves the mitogen-activated protein kinases-mediated signalling pathway, including p38, extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinases, as well as the internalization of cNK-2 into the cells. These results indicate that cNK-2 is a potential novel immunomodulating agent rather than an antimicrobial agent.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Development of monocytes, macrophages, and dendritic cells.

          Monocytes and macrophages are critical effectors and regulators of inflammation and the innate immune response, the immediate arm of the immune system. Dendritic cells initiate and regulate the highly pathogen-specific adaptive immune responses and are central to the development of immunologic memory and tolerance. Recent in vivo experimental approaches in the mouse have unveiled new aspects of the developmental and lineage relationships among these cell populations. Despite this, the origin and differentiation cues for many tissue macrophages, monocytes, and dendritic cell subsets in mice, and the corresponding cell populations in humans, remain to be elucidated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immune modulation by multifaceted cationic host defense (antimicrobial) peptides.

            Cationic host defense (antimicrobial) peptides were originally studied for their direct antimicrobial activities. They have since been found to exhibit multifaceted immunomodulatory activities, including profound anti-infective and selective anti-inflammatory properties, as well as adjuvant and wound-healing activities in animal models. These biological properties suggest that host defense peptides, and synthetic derivatives thereof, possess clinical potential beyond the treatment of antibiotic-resistant infections. In this Review, we provide an overview of the biological activities of host defense and synthetic peptides, their mechanism(s) of action and new therapeutic applications and challenges that are associated with their clinical use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses.

              The role of LL-37, a human cationic antimicrobial peptide, in the immune system is not yet clearly understood. It is a widely expressed peptide that can be up-regulated during an immune response. In this report, we demonstrate that LL-37 is a potent antisepsis agent with the ability to inhibit macrophage stimulation by bacterial components such as LPS, lipoteichoic acid, and noncapped lipoarabinomannan. We also demonstrate that LL-37 protects mice against lethal endotoxemia. In addition to preventing macrophage activation by bacterial components, we hypothesized the LL-37 may also have direct effects on macrophage function. We therefore used gene expression profiling to identify macrophage functions that might be modulated by LL-37. These studies revealed that LL-37 directly up-regulates 29 genes and down-regulated another 20 genes. Among the genes predicted to be up-regulated by LL-37 were those encoding chemokines and chemokine receptors. Consistent with this, LL-37 up-regulated the expression of chemokines in macrophages and the mouse lung (monocyte chemoattractant protein 1), human A549 epithelial cells (IL-8), and whole human blood (monocyte chemoattractant protein 1 and IL-8), without stimulating the proinflammatory cytokine, TNFalpha. LL-37 also up-regulated the chemokine receptors CXCR-4, CCR2, and IL-8RB. These findings indicate that LL-37 may contribute to the immune response by limiting the damage caused by bacterial products and by recruiting immune cells to the site of infection so that they can clear the infection.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 March 2017
                2017
                : 7
                : 45099
                Affiliations
                [1 ]Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, ARS, U.S. Department of Agriculture , Beltsville, MD 20705, USA
                [2 ]College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University , Jinju 52828, Korea
                Author notes
                Article
                srep45099
                10.1038/srep45099
                5362811
                28332637
                517e0558-520f-44f2-911e-ca980f3e1530
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 11 November 2016
                : 16 February 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article