9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transplantation of bovine adrenocortical cells encapsulated in alginate

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Current treatment options for adrenal insufficiency are limited to corticosteroid replacement therapies. However, hormone therapy does not replicate circadian rhythms and has unpleasant side effects especially due to the failure to restore normal function of the hypothalamic-pituitary-adrenal (HPA) axis. Adrenal cell transplantation and the restoration of HPA axis function would be a feasible and useful therapeutic strategy for patients with adrenal insufficiency. We created a bioartificial adrenal with 3D cell culture conditions by encapsulation of bovine adrenocortical cells (BACs) in alginate (enBACs). We found that, compared with BACs in monolayer culture, encapsulation in alginate significantly increased the life span of BACs. Encapsulation also improved significantly both the capacity of adrenal cells for stable, long-term basal hormone release as well as the response to pituitary adrenocorticotropic hormone (ACTH) and hypothalamic luteinizing hormone-releasing hormone (LHRH) agonist, [D-Trp6]LHRH. The enBACs were transplanted into adrenalectomized, immunodeficient, and immunocompetent rats. Animals received enBACs intraperitoneally, under the kidney capsule (free cells or cells encapsulated in alginate slabs) or s.c. enclosed in oxygenating and immunoisolating βAir devices. Graft function was confirmed by the presence of cortisol in the plasma of rats. Both types of grafted encapsulated cells, explanted after 21-25 d, preserved their morphology and functional response to ACTH stimulation. In conclusion, transplantation of a bioartificial adrenal with xenogeneic cells may be a treatment option for patients with adrenocortical insufficiency and other stress-related disorders. Furthermore, this model provides a microenvironment that ensures 3D cell-cell interactions as a unique tool to investigate new insights into cell biology, differentiation, tissue organization, and homeostasis.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Visualization of an Oxygen-deficient Bottom Water Circulation in Osaka Bay, Japan

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Congenital adrenal hyperplasia.

            Congenital adrenal hyperplasia (CAH) due to deficiency of 21-hydroxylase is a disorder of the adrenal cortex characterised by cortisol deficiency, with or without aldosterone deficiency, and androgen excess. Patients with the most severe form also have abnormalities of the adrenal medulla and epinephrine deficiency. The severe classic form occurs in one in 15,000 births worldwide, and the mild non-classic form is a common cause of hyperandrogenism. Neonatal screening for CAH and gene-specific prenatal diagnosis are now possible. Standard hormone replacement fails to achieve normal growth and development for many children with CAH, and adults can experience iatrogenic Cushing's syndrome, hyperandrogenism, infertility, or the development of the metabolic syndrome. This Seminar reviews the epidemiology, genetics, pathophysiology, diagnosis, and management of CAH, and provides an overview of clinical challenges and future therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transplantation of human islets without immunosuppression.

              Transplantation of pancreatic islets is emerging as a successful treatment for type-1 diabetes. Its current stringent restriction to patients with critical metabolic lability is justified by the long-term need for immunosuppression and a persistent shortage of donor organs. We developed an oxygenated chamber system composed of immune-isolating alginate and polymembrane covers that allows for survival and function of islets without immunosuppression. A patient with type-1 diabetes received a transplanted chamber and was followed for 10 mo. Persistent graft function in this chamber system was demonstrated, with regulated insulin secretion and preservation of islet morphology and function without any immunosuppressive therapy. This approach may allow for future widespread application of cell-based therapies.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 24 2015
                February 24 2015
                : 112
                : 8
                : 2527-2532
                Article
                10.1073/pnas.1500242112
                4345555
                25675525
                519c4e52-08a1-4161-a36b-19c444e1b0cb
                © 2015
                History

                Comments

                Comment on this article