4,785
views
0
recommends
+1 Recommend
0 collections
    54
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Differential expression analysis for sequence count data

      research-article
      1 , , 1
      Genome Biology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptional landscape of the yeast genome defined by RNA sequencing.

          The identification of untranslated regions, introns, and coding regions within an organism remains challenging. We developed a quantitative sequencing-based method called RNA-Seq for mapping transcribed regions, in which complementary DNA fragments are subjected to high-throughput sequencing and mapped to the genome. We applied RNA-Seq to generate a high-resolution transcriptome map of the yeast genome and demonstrated that most (74.5%) of the nonrepetitive sequence of the yeast genome is transcribed. We confirmed many known and predicted introns and demonstrated that others are not actively used. Alternative initiation codons and upstream open reading frames also were identified for many yeast genes. We also found unexpected 3'-end heterogeneity and the presence of many overlapping genes. These results indicate that the yeast transcriptome is more complex than previously appreciated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HITS-CLIP yields genome-wide insights into brain alternative RNA processing

            Summary Protein-RNA interactions play critical roles in all aspects of gene expression. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova2 revealed extremely reproducible RNA binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3′ UTRs, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small-sample estimation of negative binomial dispersion, with applications to SAGE data.

              We derive a quantile-adjusted conditional maximum likelihood estimator for the dispersion parameter of the negative binomial distribution and compare its performance, in terms of bias, to various other methods. Our estimation scheme outperforms all other methods in very small samples, typical of those from serial analysis of gene expression studies, the motivating data for this study. The impact of dispersion estimation on hypothesis testing is studied. We derive an "exact" test that outperforms the standard approximate asymptotic tests.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central
                1465-6906
                1465-6914
                2010
                27 October 2010
                : 11
                : 10
                : R106
                Affiliations
                [1 ]European Molecular Biology Laboratory, Mayerhofstraße 1, 69117 Heidelberg, Germany
                Article
                gb-2010-11-10-r106
                10.1186/gb-2010-11-10-r106
                3218662
                20979621
                519ddc53-8f7f-49b6-ac3e-c209dcbce6f6
                Copyright ©2010 Anders et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 April 2010
                : 22 July 2010
                : 27 October 2010
                Categories
                Method

                Genetics
                Genetics

                Comments

                Comment on this article