135
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Properties of Osteoconductive Biomaterials: Calcium Phosphates :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone is formed by a series of complex events involving the mineralization of extracellular matrix proteins rigidly orchestrated by cells with specific functions of maintaining the integrity of the bone. Bone, similar to other calcified tissues, is an intimate composite of the organic (collagen and noncollagenous proteins) and inorganic or mineral phases. The bone mineral idealized as calcium hydroxyapatite, Ca10 (PO4)(6)(OH)2, is a carbonatehydroxyapatite, approximated by the formula: (Ca,X)(10)(PO4,HPO4,CO3)(6)(OH,Y)2, where X are cations (magnesium, sodium, strontium ions) that can substitute for the calcium ions, and Y are anions (chloride or fluoride ions) that can substitute for the hydroxyl group. The current author presents a brief review of CaP biomaterials that now are used as grafts for bone repair, augmentation, or substitution. Commercially-available CaP biomaterials differ in origin (natural or synthetic), composition (hydroxyapatite, beta-tricalcium phosphate, and biphasic CaP), or physical forms (particulates, blocks, cements, coatings on metal implants, composites with polymers), and in physicochemical properties. CaP biomaterials have outstanding properties: similarity in composition to bone mineral; bioactivity (ability to form bone apatitelike material or carbonate hydroxyapatite on their surfaces), ability to promote cellular function and expression leading to formation of a uniquely strong bone-CaP biomaterial interface; and osteoconductivity (ability to provide the appropriate scaffold or template for bone formation). In addition, CaP biomaterials with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive (capable of osteogenesis), and can be effective carriers of bone cell seeds. Therefore, CaP biomaterials potentially are useful in tissue engineering for regeneration of hard tissues.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Apatites in biological systems

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis.

              Bone morphogenetic protein (BMP) is known to require a suitable carrier to induce ectopic bone formation in vivo. Hydroxyapatite ceramics have been reported to be effective in some forms but ineffective in others as a carrier of BMP-induced bone formation. In this study we compare three geometrically different forms of hydroxyapatite to examine their functions as carriers of BMP-induced bone formation. A fraction containing all the active BMPs (BMP cocktail) was partially purified from a 4M guanidine extract from bovine bone by a three-step chromatographic procedure. The BMP cocktail was combined with each of three forms of hydroxyapatite--solid particles (SPHAP), porous particles (PPHAP), and coral-replicated porous tablets (coral-HAP)--and implanted subcutaneously into rats. Both the PPHAP and coral-HAP systems induced osteogenesis 2 weeks after implantation, as evidenced by morphological and biochemical observations. Details of the osteogenetic process were followed by double-fluorescence labeling in the coral-HAP system to confirm bone formation on the surface of hydroxyapatite. However, there was no evidence of osteogenesis or chondrogenesis in the SPHAP system. The results indicate that the geometry of the interconnected porous structure in PPHAP and coral-HAP create spaces for vasculature that lead to osteogenesis while the smooth structure and close contact of particles in SPHAP inhibit vascular formation and proliferation of mesenchymal cells, preventing bone and cartilage formation. It was concluded that the geometrical structure in hydroxyapatite ceramics that induces vasculature is crucial as a carrier for BMP-induced bone formation.
                Bookmark

                Author and article information

                Journal
                Clinical Orthopaedics and Related Research
                Clinical Orthopaedics and Related Research
                Ovid Technologies (Wolters Kluwer Health)
                0009-921X
                2002
                February 2002
                : 395
                : 81-98
                Article
                10.1097/00003086-200202000-00009
                11937868
                51a41a54-b0ba-4c35-9b13-10564cb76d63
                © 2002
                History

                Comments

                Comment on this article