19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Manipulating the Mitochondrial Genome To Enhance Cattle Embryo Development

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mixing of mitochondrial DNA (mtDNA) from the donor cell and the recipient oocyte in embryos and offspring derived from somatic cell nuclear transfer (SCNT) compromises genetic integrity and affects embryo development. We set out to generate SCNT embryos that inherited their mtDNA from the recipient oocyte only, as is the case following natural conception. While SCNT blastocysts produced from Holstein ( Bos taurus) fibroblasts depleted of their mtDNA, and oocytes derived from Angus ( Bos taurus) cattle possessed oocyte mtDNA only, the coexistence of donor cell and oocyte mtDNA resulted in blastocysts derived from nondepleted cells. Moreover, the use of the reprogramming agent, Trichostatin A (TSA), further improved the development of embryos derived from depleted cells. RNA-seq analysis highlighted 35 differentially expressed genes from the comparison between blastocysts generated from nondepleted cells and blastocysts from depleted cells, both in the presence of TSA. The only differences between these two sets of embryos were the presence of donor cell mtDNA, and a significantly higher mtDNA copy number for embryos derived from nondepleted cells. Furthermore, the use of TSA on embryos derived from depleted cells positively modulated the expression of CLDN8, TMEM38A, and FREM1, which affect embryonic development. In conclusion, SCNT embryos produced by mtDNA depleted donor cells have the same potential to develop to the blastocyst stage without the presumed damaging effect resulting from the mixture of donor and recipient mtDNA.

          Most cited references75

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Viable offspring derived from fetal and adult mammalian cells.

            Fertilization of mammalian eggs is followed by successive cell divisions and progressive differentiation, first into the early embryo and subsequently into all of the cell types that make up the adult animal. Transfer of a single nucleus at a specific stage of development, to an enucleated unfertilized egg, provided an opportunity to investigate whether cellular differentiation to that stage involved irreversible genetic modification. The first offspring to develop from a differentiated cell were born after nuclear transfer from an embryo-derived cell line that had been induced to become quiescent. Using the same procedure, we now report the birth of live lambs from three new cell populations established from adult mammary gland, fetus and embryo. The fact that a lamb was derived from an adult cell confirms that differentiation of that cell did not involve the irreversible modification of genetic material required for development to term. The birth of lambs from differentiated fetal and adult cells also reinforces previous speculation that by inducing donor cells to become quiescent it will be possible to obtain normal development from a wide variety of differentiated cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation.

              Two human cell lines (termed rho 0), which had been completely depleted of mitochondrial DNA (mtDNA) by long-term exposure to ethidium bromide, were found to be dependent on uridine and pyruvate for growth because of the absence of a functional respiratory chain. Loss of either of these two metabolic requirements was used as a selectable marker for the repopulation of rho 0 cells with exogenous mitochondria by complementation. Transformants obtained with various mitochondrial donors exhibited a respiratory phenotype that was in most cases distinct from that of the rho 0 parent or the donor, indicating that the genotypes of the mitochondrial and nuclear genomes as well as their specific interactions play a role in the respiratory competence of a cell.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                8 May 2017
                July 2017
                : 7
                : 7
                : 2065-2080
                Affiliations
                [* ]Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
                []Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
                Author notes
                [1 ]Corresponding author: Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright St., Clayton, VIC 3168, Australia. E-mail: justin.stjohn@ 123456hudson.org.au
                Author information
                http://orcid.org/0000-0002-3993-1449
                Article
                GGG_042655
                10.1534/g3.117.042655
                5499117
                28500053
                51b93ac6-f80b-4852-9ea3-3151d5949190
                Copyright © 2017 Srirattana and St. John

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 05 August 2016
                : 24 April 2017
                Page count
                Figures: 8, Tables: 4, Equations: 0, References: 83, Pages: 16
                Categories
                Investigations

                Genetics
                mitochondrial dna,depletion,cattle,somatic cell nuclear transfer,embryo development
                Genetics
                mitochondrial dna, depletion, cattle, somatic cell nuclear transfer, embryo development

                Comments

                Comment on this article