13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Most Developmentally Truncated Fishes Show Extensive Hox Gene Loss and Miniaturized Genomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The world’s smallest fishes belong to the genus Paedocypris. These miniature fishes are endemic to an extreme habitat: the peat swamp forests in Southeast Asia, characterized by highly acidic blackwater. This threatened habitat is home to a large array of fishes, including a number of miniaturized but also developmentally truncated species. Especially the genus Paedocypris is characterized by profound, organism-wide developmental truncation, resulting in sexually mature individuals of <8 mm in length with a larval phenotype. Here, we report on evolutionary simplification in the genomes of two species of the dwarf minnow genus Paedocypris using whole-genome sequencing. The two species feature unprecedented Hox gene loss and genome reduction in association with their massive developmental truncation. We also show how other genes involved in the development of musculature, nervous system, and skeleton have been lost in Paedocypris, mirroring its highly progenetic phenotype. Further, our analyses suggest two mechanisms responsible for the genome streamlining in Paedocypris in relation to other Cypriniformes: severe intron shortening and reduced repeat content. As the first report on the genomic sequence of a vertebrate species with organism-wide developmental truncation, the results of our work enhance our understanding of genome evolution and how genotypes are translated to phenotypes. In addition, as a naturally simplified system closely related to zebrafish, Paedocypris provides novel insights into vertebrate development.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data.

          Heng Li (2011)
          Most existing methods for DNA sequence analysis rely on accurate sequences or genotypes. However, in applications of the next-generation sequencing (NGS), accurate genotypes may not be easily obtained (e.g. multi-sample low-coverage sequencing or somatic mutation discovery). These applications press for the development of new methods for analyzing sequence data with uncertainty. We present a statistical framework for calling SNPs, discovering somatic mutations, inferring population genetical parameters and performing association tests directly based on sequencing data without explicit genotyping or linkage-based imputation. On real data, we demonstrate that our method achieves comparable accuracy to alternative methods for estimating site allele count, for inferring allele frequency spectrum and for association mapping. We also highlight the necessity of using symmetric datasets for finding somatic mutations and confirm that for discovering rare events, mismapping is frequently the leading source of errors. http://samtools.sourceforge.net. hengli@broadinstitute.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The zebrafish reference genome sequence and its relationship to the human genome.

            Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data

              (2013)
              Motivation: Most existing methods for DNA sequence analysis rely on accurate sequences or genotypes. However, in applications of the next-generation sequencing (NGS), accurate genotypes may not be easily obtained (e.g. multi-sample low-coverage sequencing or somatic mutation discovery). These applications press for the development of new methods for analyzing sequence data with uncertainty. Results: We present a statistical framework for calling SNPs, discovering somatic mutations, inferring population genetical parameters and performing association tests directly based on sequencing data without explicit genotyping or linkage-based imputation. On real data, we demonstrate that our method achieves comparable accuracy to alternative methods for estimating site allele count, for inferring allele frequency spectrum and for association mapping. We also highlight the necessity of using symmetric datasets for finding somatic mutations and confirm that for discovering rare events, mismapping is frequently the leading source of errors. Availability: http://samtools.sourceforge.net. Contact: hengli@broadinstitute.org.
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                April 2018
                15 March 2018
                15 March 2018
                : 10
                : 4
                : 1088-1103
                Affiliations
                [1 ]Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway
                [2 ]Zoological Institute, University of Basel, Switzerland
                [3 ]Department of Life Sciences, Natural History Museum, London, United Kingdom
                [4 ]Ichthyology Laboratory, Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
                [5 ]Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia
                [6 ]Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
                [7 ]Naturhistorisches Museum Bern, Switzerland
                [8 ]Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Switzerland
                Author notes

                Associate editor: Maria Costantini

                Data deposition: This project has been deposited at EMBL Nucleotide Sequence Databse (ENA) under the accession PRJEB15524. See also Data Availability section.

                Corresponding author: E-mail: martin.malmstrom@ 123456ibv.uio.no
                Article
                evy058
                10.1093/gbe/evy058
                5906920
                29684203
                51b9db30-d279-463c-b533-42dc58115733
                © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 13 March 2018
                Page count
                Pages: 24
                Funding
                Funded by: National University of Singapore 10.13039/501100001352
                Award ID: R-154-000-318-112
                Funded by: North of England Zoological Society 10.13039/501100005113
                Categories
                Research Article

                Genetics
                progenesis,cyprinidae,transposable elements,evolution
                Genetics
                progenesis, cyprinidae, transposable elements, evolution

                Comments

                Comment on this article