4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: An unusual way of life for a methanogenic archaeon

      ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          All methanogenic Archaea examined to date rely on methanogenesis as their sole means of energy conservation. Among these are ones that use carbon monoxide as a growth substrate, producing methane via a pathway that involves hydrogen as an intermediate. To further examine the role of hydrogen in this process, we tested the ability of Methanosarcina acetivorans C2A, a metabolically versatile methanogen devoid of significant hydrogen metabolism, to use CO as a growth substrate. M. acetivorans grew on CO to high cell densities (approximately 1 x 10(8) per ml) with a doubling time of approximately 24 h. Surprisingly, acetate and formate, rather than methane, were the major metabolic end products as shown by 13C NMR studies and enzymatic analysis of culture supernatants. Methane formation surpassed acetate/formate formation only when the cultures entered stationary growth phase, strongly suggesting that M. acetivorans conserves energy by means of this acetogenic and formigenic process. Resting cell experiments showed that methane production decreased linearly with increasing CO partial pressures, consistent with inhibition of methanogenesis by CO. Transposon-induced M. acetivorans mutants with lesions in the operon encoding phosphotransacetylase and acetate kinase failed to use either acetate or CO as growth substrates, indicating that these enzymes are required for both aceticlastic methanogenesis and carboxidotrophic acetogenesis. These findings greatly extend our concept of energy conservation and metabolic versatility in the methanogenic Archaea.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Article: not found

          Anaerobic citrate metabolism and its regulation in enterobacteria

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxalobacter formigenes and its role in oxalate metabolism in the human gut.

            Oxalate is ingested in a wide range of animal feeds and human foods and beverages and is formed endogenously as a waste product of metabolism. Bacterial, rather than host, enzymes are required for the intestinal degradation of oxalate in man and mammals. The bacterium primarily responsible is the strict anaerobe Oxalobacter formigenes. In humans, this organism is found in the colon. O. formigenes has an obligate requirement for oxalate as a source of energy and cell carbon. In O. formigenes, the proton motive force for energy conservation is generated by the electrogenic antiport of oxalate(2-) and formate(1-) by the oxalate-formate exchanger, OxlT. The coupling of oxalate-formate exchange to the reductive decarboxylation of oxalyl CoA forms an 'indirect' proton pump. Oxalate is voided in the urine and the loss of O. formigenes may be accompanied by elevated concentrations of urinary oxalate, increasing the risk of recurrent calcium oxalate kidney stone formation. Links between the occurrence of nephrolithiasis and the presence of Oxalobacter have led to the suggestion that antibiotic therapy may contribute to the loss of this organism from the colonic microbiota. Studies in animals and human volunteers have indicated that, when administered therapeutically, O. formigenes can establish in the gut and reduce the urinary oxalate concentration following an oxalate load, hence reducing the likely incidence of calcium oxalate kidney stone formation. The findings to date suggest that anaerobic, colonic bacteria such as O. formigenes, that are able to degrade toxic compounds in the gut, may, in future, find application for therapeutic use, with substantial benefit for human health and well-being.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel?

              P Lindahl (2002)
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                November 30 2004
                November 30 2004
                November 18 2004
                November 30 2004
                : 101
                : 48
                : 16929-16934
                Article
                10.1073/pnas.0407486101
                529327
                15550538
                51ccbfee-277d-4202-8357-b90616c1e464
                © 2004
                History

                Comments

                Comment on this article