66
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine ( vitis vinifera) fruit

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays.

          Results

          Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages.

          Conclusions

          This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes.

            We present a simple but powerful procedure to extract Gene Ontology (GO) terms that are significantly over- or under-represented in sets of genes within the context of a genome-scale experiment (DNA microarray, proteomics, etc.). Said procedure has been implemented as a web application, FatiGO, allowing for easy and interactive querying. FatiGO, which takes the multiple-testing nature of statistical contrast into account, currently includes GO associations for diverse organisms (human, mouse, fly, worm and yeast) and the TrEMBL/Swissprot GOAnnotations@EBI correspondences from the European Bioinformatics Institute.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions.

              Temperature and light are important environmental factors that affect flavonoid biosynthesis in grape berry skin. However, the interrelationships between temperature and light effects on flavonoid biosynthesis have not been fully elucidated at the molecular level. Here, we investigated the effects of temperature and light conditions on the biosynthesis of flavonoids (anthocyanins and flavonols) and the expression levels of related genes in an in vitro environmental experiment using detached grape berries. Sufficient anthocyanin accumulation in the grape skin was observed under a low temperature (15 °C) plus light treatment, whereas high temperature (35 °C) or dark treatment severely suppressed anthocyanin accumulation. This indicates that the accumulation of anthocyanins is dependent on both low temperature and light. qRT-PCR analysis showed that the responses of three MYB-related genes (VlMYBA1-3, VlMYBA1-2, and VlMYBA2) to temperature and light differed greatly even though the products of all three genes had the ability to regulate anthocyanin biosynthesis pathway genes. Furthermore, the expression levels of other MYB-related genes and many flavonoid biosynthesis pathway genes were regulated independently by temperature and light. We also found that temperature and light conditions affected the anthocyanin composition in the skin through the regulation of flavonoid biosynthesis pathway genes. Our results suggest that low temperature and light have a synergistic effect on the expression of genes in the flavonoid biosynthesis pathway. These findings provide new information about the relationships between environmental factors and flavonoid accumulation in grape berry skin.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2014
                28 April 2014
                : 14
                : 108
                Affiliations
                [1 ]Fondation Jean Poupelain, 30 Rue Gâte Chien, Javrezac 16100, France
                [2 ]Montpellier SupAgro-INRA, UMR AGAP-DAAV & UMT Genovigne, 2 place Pierre Viala, Montpellier 34060, France
                [3 ]INRA, UMR LEPSE, 2 place Pierre Viala, Montpellier 34060, France
                [4 ]INRA, ISVV, UMR EGFV 1287, 210 chemin de Levsotee, Villenave d’Ornon F-33140, France
                [5 ]Laboratoire d’Oenologie, UMR1083, Faculté de Pharmacie, Université Montpellier 1, Montpellier 34093, France
                [6 ]INRA, UMR AGAP-DAAV, 2 place Pierre Viala, Montpellier, Cedex 02 34060, France
                Article
                1471-2229-14-108
                10.1186/1471-2229-14-108
                4030582
                24774299
                51d3ba7e-efc0-4ecc-ac7d-3c93ebff77ff
                Copyright © 2014 Rienth et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 10 January 2014
                : 11 April 2014
                Categories
                Research Article

                Plant science & Botany
                Plant science & Botany

                Comments

                Comment on this article