8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Alternative splicing in the alpha-galactosidase A gene: increased exon inclusion results in the Fabry cardiac phenotype.

      American Journal of Human Genetics
      Alternative Splicing, genetics, Amino Acid Sequence, Animals, Base Sequence, COS Cells, Exons, Fabry Disease, complications, enzymology, physiopathology, Heart Diseases, Humans, Molecular Sequence Data, Mutation, Phenotype, RNA, Messenger, metabolism, Reverse Transcriptase Polymerase Chain Reaction, Sequence Alignment, alpha-Galactosidase, chemistry

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fabry disease is an inborn error of glycosphingolipid catabolism, resulting from deficient activity of lysosomal alpha-galactosidase A (alpha-Gal A). A rare alternative splicing that introduces a 57-nucleotide (nt) intronic sequence to the alpha-Gal A transcript from intron 4 of the gene has been identified. In addition, a novel midintronic base substitution that results in substantially increased alternative splicing has been identified in a patient with Fabry disease who has the cardiac variant phenotype. The sequence of the patient's intron 4 contains a single G-->A transversion at genomic nt 9331 (IVS4+919 G-->A ), located at the minus sign4 position of the 3' end of the intronic insertion (nts 9278--9334 in the genomic sequence). Minigene constructs containing the entire intron 4 sequence with G, A, C, or T at nt 9331 within an alpha-Gal A complementary DNA expression vector were prepared and expressed in COS-1 cells. Whereas transfection of the G or T minigenes transcribed predominantly normal-sized transcripts, the transfection of the A or C minigenes produced a large amount of the alternatively spliced transcript. These results suggest that the G-->A mutation, within an A/C-rich domain, results in increased recognition of the alternative splicing by an A/C-rich enhancer-type exonic splicing enhancer. The intronic mutation was not observed in 100 unrelated unaffected men but was present in 6 unrelated patients with cardiac Fabry disease. Reverse-transcriptase polymerase chain reaction of total RNA of various normal human tissues revealed that the alternatively spliced transcript was present in all of the samples, and especially at a higher ratio in the lung and muscle. The normal transcript was present in the patients' lymphoblasts and resulted in approximately 10% residual enzyme activity, leading to a cardiac phenotype of Fabry disease.

          Related collections

          Author and article information

          Comments

          Comment on this article