22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resveratrol Specifically Kills Cancer Cells by a Devastating Increase in the Ca 2+ Coupling Between the Greatly Tethered Endoplasmic Reticulum and Mitochondria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims

          Resveratrol and its derivate piceatannol are known to induce cancer cell-specific cell death. While multiple mechanisms of actions have been described including the inhibition of ATP synthase, changes in mitochondrial membrane potential and ROS levels, the exact mechanisms of cancer specificity of these polyphenols remain unclear. This paper is designed to reveal the molecular basis of the cancer-specific initiation of cell death by resveratrol and piceatannol.

          Methods

          The two cancer cell lines EA.hy926 and HeLa, and somatic short-term cultured HUVEC were used. Cell viability and caspase 3/7 activity were tested. Mitochondrial, cytosolic and endoplasmic reticulum Ca 2+ as well as cytosolic and mitochondrial ATP levels were measured using single cell fluorescence microscopy and respective genetically-encoded sensors. Mitochondria-ER junctions were analyzed applying super-resolution SIM and ImageJ-based image analysis.

          Results

          Resveratrol and piceatannol selectively trigger death in cancer but not somatic cells. Hence, these polyphenols strongly enhanced mitochondrial Ca 2+ uptake in cancer exclusively. Resveratrol and piceatannol predominantly affect mitochondrial but not cytosolic ATP content that yields in a reduced SERCA activity. Decreased SERCA activity and the strongly enriched tethering of the ER and mitochondria in cancer cells result in an enhanced MCU/Letm1-dependent mitochondrial Ca 2+ uptake upon intracellular Ca 2+ release exclusively in cancer cells. Accordingly, resveratrol/piceatannol-induced cancer cell death could be prevented by siRNA-mediated knock-down of MCU and Letm1.

          Conclusions

          Because their greatly enriched ER-mitochondria tethering, cancer cells are highly susceptible for resveratrol/piceatannol-induced reduction of SERCA activity to yield mitochondrial Ca 2+ overload and subsequent cancer cell death.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake

          Mitochondrial calcium uptake plays a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients, and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here, we utilize an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics, and organelle proteomics. RNA interference against 13 top candidates highlighted one gene that we now call mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the organelle’s inner membrane and has two canonical EF hands that are essential for its activity, suggesting a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high capacity mitochondrial calcium entry. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of mitochondrial dehydrogenases by calcium ions.

            Studies in Bristol in the 1960s and 1970s, led to the recognition that four mitochondrial dehydrogenases are activated by calcium ions. These are FAD-glycerol phosphate dehydrogenase, pyruvate dehydrogenase, NAD-isocitrate dehydrogenase and oxoglutarate dehydrogenase. FAD-glycerol phosphate dehydrogenase is located on the outer surface of the inner mitochondrial membrane and is influenced by changes in cytoplasmic calcium ion concentration. The other three enzymes are located within mitochondria and are regulated by changes in mitochondrial matrix calcium ion concentration. These and subsequent studies on purified enzymes, mitochondria and intact cell preparations have led to the widely accepted view that the activation of these enzymes is important in the stimulation of the respiratory chain and hence ATP supply under conditions of increased ATP demand in many stimulated mammalian cells. The effects of calcium ions on FAD-isocitrate dehydrogenase involve binding to an EF-hand binding motif within this enzyme but the binding sites involved in the effects of calcium ions on the three intramitochondrial dehydrogenases remain to be fully established. It is also emphasised in this article that these three dehydrogenases appear only to be regulated by calcium ions in vertebrates and that this raises some interesting and potentially important developmental issues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phospholipid synthesis in a membrane fraction associated with mitochondria.

              J Vance (1990)
              A crude rat liver mitochondrial fraction that was capable of the rapid, linked synthesis of phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) labeled from [3-3H] serine has been fractionated. PtdSer synthase, PtdEtn methyltransferase, and CDP-choline:diacylglycerol cholinephosphotransferase activities were present in the crude mitochondrial preparation but were absent from highly purified mitochondria and could be attributed to the presence of a membrane fraction, X. Thus, previous claims of the mitochondrial location of some of these enzymes might be explained by the presence of fraction X in the mitochondrial preparation. Fraction X had many similarities to microsomes except that it sedimented with mitochondria (at 10,000 x g). However, the specific activities of PtdSer synthase and glucose-6-phosphate phosphatase in fraction X were almost twice that of microsomes, and the specific activities of CTP:phosphocholine cytidylyltransferase and NADPH:cytochrome c reductase in fraction X were much lower than in microsomes. The marker enzymes for mitochondria, Golgi apparatus, plasma membrane, lysosomes, and peroxisomes all had low activities in fraction X. Polyacrylamide gel electrophoresis revealed distinct differences, as well as similarities, among the proteins of fraction X, microsomes, and rough and smooth endoplasmic reticulum. The combined mitochondria-fraction X membranes can synthesize PtdSer, PtdEtn, and PtdCho from serine. Thus, fraction X in combination with mitochondria might be responsible for the observed compartmentalization of a serine-labeled pool of phospholipids previously identified (Vance, J. E., and Vance, D. E. (1986) J. Biol. Chem. 261, 4486-4491) and might be involved in the transfer of lipids between the endoplasmic reticulum and mitochondria.
                Bookmark

                Author and article information

                Journal
                9113221
                20931
                Cell Physiol Biochem
                Cell. Physiol. Biochem.
                Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
                1015-8987
                1421-9778
                3 April 2017
                09 September 2016
                2016
                06 April 2017
                : 39
                : 4
                : 1404-1420
                Affiliations
                [a ]Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
                [b ]Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
                Author notes
                Wolfgang F. Graier, Ph.D., Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/3, 8010 Graz, (Austria), wolfgang.graier@ 123456medunigraz.at
                Article
                EMS72158
                10.1159/000447844
                5382978
                27606689
                51d92c95-d637-42be-b4ed-9d5036907263

                This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND) ( http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.

                History
                Categories
                Article

                mitochondria,endoplasmic reticulum,calcium signaling,mitochondria-er coupling,serca

                Comments

                Comment on this article