The purpose of this study was to evaluate the influence of buccal and lingual wall thickness on the fatigue resistance of molars restored with CAD/CAM ceramic inlays. Forty human third molars were selected and divided into 4 groups, according to the remaining surrounding wall thickness chosen for inlay preparation (n = 10): G1, 2.0 mm; G2, 1.5 mm; G3, 1.0 mm; G4, 0.5 mm. All inlays were made from feldspathic ceramic blocks by a CAD/CAM system, and cemented adhesively. After 1 week stored in distilled water at 37 °C, the specimens were subjected to fatigue testing under the following protocol: 5Hz; pre-load of 200 N for 5,000 cycles, followed by increasing loads of 400, 600, 800, 1000, 1200 and 1400 N for 30,000 cycles each. The specimens were cycled until failure or completion of 185,000 cycles. The survival rate of the groups was compared using the Kaplan-Meier survival curves (p > 0.05). All specimens withstood the fatigue protocol (185,000 cycles), representing a 100% survival rate. The Kaplan-Meier survival curves showed no difference between groups. It can be concluded that the remaining tooth wall thickness did not influence the fatigue resistance of molars restored with CAD/CAM ceramic inlays.