36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The chromatin architectural proteins HMGD1 and H1 bind reciprocally and have opposite effects on chromatin structure and gene regulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. While these proteins are almost certainly important for gene regulation they have been studied far less than the core histone proteins.

          Results

          Here we describe the genomic distributions and functional roles of two chromatin architectural proteins: histone H1 and the high mobility group protein HMGD1 in Drosophila S2 cells. Using ChIP-seq, biochemical and gene specific approaches, we find that HMGD1 binds to highly accessible regulatory chromatin and active promoters. In contrast, H1 is primarily associated with heterochromatic regions marked with repressive histone marks. We find that the ratio of HMGD1 to H1 binding is a better predictor of gene activity than either protein by itself, which suggests that reciprocal binding between these proteins is important for gene regulation. Using knockdown experiments, we show that HMGD1 and H1 affect the occupancy of the other protein, change nucleosome repeat length and modulate gene expression.

          Conclusion

          Collectively, our data suggest that dynamic and mutually exclusive binding of H1 and HMGD1 to nucleosomes and their linker sequences may control the fluid chromatin structure that is required for transcriptional regulation. This study provides a framework to further study the interplay between chromatin architectural proteins and epigenetics in gene regulation.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          High-resolution mapping and characterization of open chromatin across the genome.

          Mapping DNase I hypersensitive (HS) sites is an accurate method of identifying the location of genetic regulatory elements, including promoters, enhancers, silencers, insulators, and locus control regions. We employed high-throughput sequencing and whole-genome tiled array strategies to identify DNase I HS sites within human primary CD4+ T cells. Combining these two technologies, we have created a comprehensive and accurate genome-wide open chromatin map. Surprisingly, only 16%-21% of the identified 94,925 DNase I HS sites are found in promoters or first exons of known genes, but nearly half of the most open sites are in these regions. In conjunction with expression, motif, and chromatin immunoprecipitation data, we find evidence of cell-type-specific characteristics, including the ability to identify transcription start sites and locations of different chromatin marks utilized in these cells. In addition, and unexpectedly, our analyses have uncovered detailed features of nucleosome structure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The diverse functions of histone lysine methylation.

            Covalent modifications of histone tails have fundamental roles in chromatin structure and function. One such modification, lysine methylation, has important functions in many biological processes that include heterochromatin formation, X-chromosome inactivation and transcriptional regulation. Here, we summarize recent advances in our understanding of how lysine methylation functions in these diverse biological processes, and raise questions that need to be addressed in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comprehensive analysis of the chromatin landscape in Drosophila

              Summary Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which impact cell differentiation, gene regulation and other key cellular processes. We present a genome-wide chromatin landscape for Drosophila melanogaster based on 18 histone modifications, summarized by 9 prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNaseI hypersensitivity, GRO-seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements, and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions, and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2014
                1 February 2014
                : 15
                : 92
                Affiliations
                [1 ]Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
                [2 ]Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
                [3 ]Department of Genetics, Stanford University, Stanford, CA 94305, USA
                [4 ]Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
                [5 ]Department of Biology, Stanford University, Stanford, CA 94305, USA
                [6 ]Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
                Article
                1471-2164-15-92
                10.1186/1471-2164-15-92
                3928079
                24484546
                51eaa2ed-9914-49e9-9485-9e86ace675f6
                Copyright © 2014 Nalabothula et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 January 2014
                : 30 January 2014
                Categories
                Research Article

                Genetics
                high mobility group protein,histone h1,nucleosome repeat length,chromatin structure,transcriptional regulation

                Comments

                Comment on this article